TLD对高层建筑减振作用的三维数值模拟
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
主要讨论TLD水箱中液体三维非线性晃动对高层建筑减振作用的影响,为TLD的实际应用提供理论依据。通过ALE方法和CEL算法分别建立二维流固耦合模型和三维流固耦合模型,对比分析二维有控模型和三维有控模型在相同地震波作用下的结构顶层位移结果;根据工程需要,对实际TLD-结构体系施加双向水平地震波,以设置TLD前后建筑结构的顶层位移和基底剪力为指标判断TLD的减振效果。计算结果表明,TLD对结构位移反应的控制是有效的,减振率可达10%左右;当地震波的卓越周期接近结构的一阶自振周期时,减振效果最好,减振率最大可达20%左右;由于增设TLD装置导致的结构总质量增加不仅不会增大基底剪力,反而进一步减小了总的基底剪力。数值计算结果表明:利用高位水箱TLD进行振动控制是可行的。
In the article,we mainly discuss the three-dimensional nonlinear liquid sloshing effects of high-rise TLD tank on vibration control.A two-dimensional fluid-structure interaction model and a three-dimensional fluid-structure interaction model are established respectively through the ALE method and CEL algorithm and the results of the top floor's displacement under the same seismic wave are analyed.According to the requirements of practice,an actual TLD-structure system under the action of the bi-directional horizontal seismic wave is simulated,taking the top displacement and base shear as index to judge the TLD vibration damping effect.The computation shows that TLD reduce the structural top displacement response effectively and the vibration reduction rate can reach 10%.The damping rate is up to 20% when the predominant period of seismic wave is close to the structural first order natural vibration period.The mass of TLD device does not increase the total base shear but reduce it inversely.The numerical calculation manifest the possibility of the using of high-position tank for vibration control.
引文
[1]李宏男,贾影,李晓光,等.利用TLD减小高柔结构多振型地震反应的研究[J].地震工程与工程振动,2000,20(2):122-128.
    [2]屈成忠,金载南,赵岩松,等.调频液态阻尼器(TLD)系统在结构减振中的应用试验[J].东北电力学院学报,1999,19(4):53-58.
    [3]张敏政,丁世文,郭迅.利用水箱减振的结构控制研究[J].地震工程与工程振动,1993,13(1):40-48.
    [4]刘立平,李英民,韩军,等.调液阻尼器减振效应研究的综述和展望[J].重庆建筑大学学报,2006,28(4):132-137.
    [5]岳宝增.贮腔类三维自由液面动力学问题数值研究[J].计算力学学报,2006,23(6):728-732.
    [6]Young-Moon Kim,Ki-Pyo You,Ji-Eun Cho.The Vibration Performance of Tuned Liquid Damper and Tuned Liquid Column Damper[J].Journal of Mechanical Science and Technology(KSME Int.J.),2006,20(6):795-805.
    [7]Novo T,Varum H,Teixeira-Dias F,et al.Tuned liquid dampers simulation for earthquake response control of buildings[J].Bull Earthquake Eng,2014,12(2):1007-1024.
    [8]周宏.液体晃动数值模拟及刚-液耦合动力学研究[D].北京:清华大学,2008。
    [9]岳宝增,刘延柱,王照林.非线性流固耦合问题的ALE分步有限元数值方法[J].力学季刊,2001,22(1):35-39.
    [10]Richard A.A finite element method for free surface flows of incompressible fluid in three dimensions[J].International Journal for Numerical Methods in Fluids,2000,33:375-403.
    [11]Ibrhim Ra,Pillipchuk V N.Racent advances in liquid sloshing dynamics[J].Applied Mechanics Review,2001,54(2):133-139.
    [12]陈招平,董平.调谐液体阻尼器动力响应的数值模拟[J].建筑结构,2008,38(6):45-47.
    [13]Tamura Y,Fuji K,Ohtsuki T.Effectiveness of Tuned Liquid Dampers Under Wind Excitation[J].Engineering Structures,1995,17(9):609-621.
    [14]Wakahara T Shimada K,Tamura Y.Practical Application of Tuned Liquid Damper for Tall buildings[M].Structures Congress 7th.Atlanta.GA:American Society of civil Engineers,1994:24-28.
    [15]Dorothy Reed,Jnkju Yu,Hang Yeh,et al.Investigation of Tuned Dampers Under Large Amplitude Excitating[J].Journal of Engineering Mechanics,1998,124(4):328-340.
    [16]赵伯明,王挺.高层建筑结构时程分析的地震波输入[J].沈阳建筑大学学报,2010,26(6):1111-1118.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心