基于小波分解的基底隔震结构的抗震分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
目的分析基底隔震结构在地震波以及地震波各个频段作用下的位移、等效静力、基底剪力.方法采用小波分解的方法对汶川地震近震区的水平地震动输入加速度进行分解,对基底隔震体系在不同频段地震动作用下进行动力学时程分析,并与未隔震体系进行对比研究.结果隔震结构在0~0.39 Hz、0.39~0.78 Hz、0.78~1.56 Hz等低频段作用下的位移反应远远大于6.25~12.5 Hz、12.5~25 Hz、25~50 Hz、50~100 Hz等高频段的位移反应,在6.25 Hz以上的频段,出现隔震结构的位移小于未隔震结构的位移,等效静力也是如此.在卧龙波以及各个频带作用下,隔震结构基底剪力远远小于未隔震结构的基底剪力.结论相比未隔震结构而言,基础隔震结构大大地降低了上部结构的地震反应,低频段地震波对结构作用很大,高频段可以放大高阶振型的作用,而隔震层起到一个低通滤波器的作用,可以滤去地震波的一些高频成分.
This paper aims to analyze seismic dynamic response of the base isolated structure under seismic waves,including displacements,equivalent static forces,base shear forces etc. Using the wavelet decomposition method,the input acceleration of horizontal earthquake shock near the Wenchuan earthquake zone was decomposed. Dynamical histories of the base isolated structure system under earthquake with different bands were analyzed and compared with the non-isolation system. It is found that displacements of the isolated structure under low frequency bands( 0 ~ 0. 39 Hz,0. 39 ~0. 78 Hz,0. 78 ~ 1. 56 Hz etc.) are far greater than that under high frequency bands( 6. 25 ~ 12. 5Hz,12. 5 ~ 25 Hz,25 ~ 50 Hz,50 ~ 100 Hz). It is also observed that under bands above 6. 25 Hz,displacements and equivalent static forces of the isolated structure are smaller than that of the non-i-solated structure. Under the Wolong waves and bands,base shear forces of the isolated are much smaller that that in non-isolated structure. Conclusion is that compared with the non-isolated structure,the base isolated structure reduces the seismic response of upper structure greatly. Low-frequency earthquake has huge impact on the structure,while high-frequency bands can amplify responses of high modals. The isolation layer can play a low-pass filter to filter some high frequency components of seismic waves.
引文
[1]李爱群.日本东北大地震之隔减震建筑考察与思考[J].工程力学,2012,29(S):69-77.(Li Aaiquen.Investigation and consideration of seismic isolation and energy dissipation structures in Tohoku earthquake[J].Engineering Mechanics,2012,29(S):69-77.)
    [2]苏斌,晏音,曾志攀,等.四川彭州人民医院病房综合楼基础隔震结构设计[J].福建建筑,2011,152(2),48-52.(Su Bin,Yan Yin,Zeng Zhipan,et al.Design on base-isolation structure of Sichuan Province Pengzhou City hospital[J].Fujian Architecture and Construction,2011,152(2):48-52.)
    [3]叶爱君,管仲国.桥梁抗震[M].北京:人民交通出版社,2011.(Ye Aijun,Guan Zhongguo.Seismic design for highway bridge[M].Beijing:China Communications Press,2011.)
    [4]Bukowski M,Richard W,Nuzzolese V.Performance based fire protection of historical structures[J].Fire Technology,2009,45(1):34-35.
    [5]赵伯明,王挺.高层建筑结构时程分析的地震波输入[J].沈阳建筑大学学报:自然科学版,2010,26(6):1111-1118.(Zhao Boming,Wang Ting.Seismic waves input for the time-history analysis of high-rise building[J].Journal of Shenyang Jianzhu University:Natural Science,2010,26(6):1111-1118.)
    [6]郭猛,姚谦峰,李鹏飞.基于ETABS的斜交密肋框架结构地震反应分析[J].沈阳建筑大学学报:自然科学版,2009(5):842-846.(Guo Meng,Yao Qianfeng,Li Pengfei.Seismic response analysis of skew multi-ribbed frame structure based on ETABS[J].Journal of Shenyang Jianzhu University:Natural Science,2009(5):842-846.)
    [7]丁阳,葛金刚.黏滞阻尼器在单层网壳结构中的优化布置[J].地震工程与工程振动,2012,32(4):166-173.(Ding Yang,Ge Jingang.Optimal placement of viscous dampers in single-layer reticulated shell[J].Earthquake Engineering and Engineering Vibration,2012,32(4):166-173.)
    [8]黄兴淮,徐赵东,杨明飞.多维地震下大跨网格结构倒塌分析与抗倒塌措施[J].东南大学学报:自然科学版,2012,42(1):109-113.(Huang Xinghuai,Xu Zhaodong,Yang Mingfei,etal.Callapse modes and anti-callapse for long span trusses under multi-dimensional earthquakes[J].Journal of Southeast University:Natural Science Edition,2012,42(1):109-113.)
    [9]Ozbulut O,Hurlebaus S.Optimal design of superelastic-friction base isolators for seismic protection of highway bridges against near-field earthquakes[J].Earthquake Engineering and Structural Dynamics,2011,40:273-291.
    [10]任文杰,李宏男,宋钢兵等.新型自复位SMA阻尼器对框架结构减震控制的研究[J].土木工程学报,2013,46(6):14-20.(Ren Wenjie,Li Hongnan,Song Gangbing,et al.Study on seismic response control of frame structure using innovative re-centering SMA damper[J].China Civil Engineering Journal,2013,46(6):14-20.)
    [11]Kim Y C,Xue S D,Zhuang P,et al.Seismic isolation analysis of FPS bearings inspatial lattice shell structures[J].Earthquake Engineering and Engineering Vibration,2010,9(1):93-102.
    [12]Bhuiyan A,Alam M.Seismic vulnerability assessment of a multi-span continuous highway bridge fitted with shape memory alloy bars and laminated rubber bearing[J].Earthquake Spectra,2012,28(4):1379-1404.
    [13]Mirtaheri M,Zandi A P,Samadi S S,et al.Numerical and experimental study of hysteretic of cylindrical friction dampers[J].Engineering Structures,2011,33(8):3647-3656.
    [14]Miller D J,Fahnestock L A,Eatherton M R.Development and experimental validation of a nickel-titanium shape memory alloy self-centering buckling-restrained brace[J].Engineering Structures,2012,40:288-298.
    [15]Zhou Qiang,Nielsen S R K,QU Weilian.Stochastic response of an inclined shallow cable with linear viscous dampers under stochastic excitation[J].Journal of Engineering Mechanics,2010,136(11):1411-1421.
    [16]Zhou Ying,Lu Xilin,Weng Dagen,et al.A practical design method for reinforced concrete structures with viscous dampers[J].Engineering Structures,2012,39:187-198.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心