远场长周期地震动反应谱拐点特征周期研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
研究远场长周期地震动反应谱两个拐点周期的统计特征以及主要因素的影响规律。考虑震中距、震级和场地类型不同,筛选长周期成分丰富的破坏性浅源强震数字化记录,通过反应谱分析,基于Newmark-Hall模型计算加速度反应谱第一下降段特征点周期和第二下降段特征点周期,分析特征周期的变化规律。结果表明:第一下降段特征点周期和第二下降段特征点周期随震中距和震级的增大而增大,场地类型对第一下降段特征点周期有显著影响,而对第二下降段特征点周期的影响不显著;震中距和震级与第一和第二下降段特征点周期的秩相关性处于中等偏弱水平,表明该两个特征点周期随震中距和震级而变化,采用单一的震中距和震级估算设计反应谱的特征点周期,并非可靠;第一和第二下降段特征点周期的线性相关性为中等偏弱水平,现有规范以第一下降段特征点周期估算第二下降段特征点周期的线性模型并不适用于长周期地震动反应谱。考虑震中距、震级和场地类型的综合影响,给出了长周期地震动反应谱第一和第二下降段特征点周期的计算模型;依据四类场地上的统计平均值,给出第一和第二下降段特征点周期建议取值,可供规范修订时参考。
The effect of primary factors and the statistical characteristics of two corner periods for far-field long-period seismic response spectrum were studied. Considering the difference of epicentral distance,earthquake magnitude and site condition,the digital ground motion records with rich long-period component from destructive shallow earthquake were selected. Based on the response spectrum analysis,Newmark-Hall type models were employed to calculate the first corner period( Tg) and the second corner period( TD) of acceleration response spectrum,and the variation rule of two characteristic periods were analyzed. The results show that two characteristic periods,the Tgand TD,increase with the increase of epicentral distance and earthquake magnitude. The site conditions have significant effects on the Tg,but have minor effect on the TD. The rank correlations between the Tgand epicentral distance and earthquake magnitude,the TDand epicentral distance and earthquake magnitude,are in medium-weak level,which indicates that it is not reliable to estimate the Tg,TDthrough a single epicentral distance and earthquake magnitude,though the Tg,TDrely popularly on epicentral distance and earthquake magnitude. The linear correlation between the Tgand the TDis in medium-weak level,which indicates that the existing linear model,estimating the TDfrom the Tgin seismic design spectrum in Chinese code,is not very suitable for long-period seismic response spectrum. Considering the combined effect of epicentral distance,earthquake magnitude and site condition,the calculation model of two characteristic periods,the Tg,TD,for long-period seismic response spectrum are proposed,which can provide a reference to specification revision. According to the statistical average value for four types of sites,the characteristic period values are proposed.
引文
[1]俞言祥,汪素云.1996年11月9日南黄海地震的长周期地震动反应谱[J].地震,1997,17(4):364-370.(YU Yanxiang,WANG Suyun.The long period ground motion response spectra of southern Yellow sea earthquake,November 9,1996[J].Earthquake,1997,17(4):364-370.(in Chinese))
    [2]Li Q S,Zhi L H,Tuan A Y,et al.Dynamic behavior of Taipei 101 Tower:field measurement and numerical analysis[J].Journal of Structural Engineering,ASCE,2011,137(1):143-155.
    [3]刘强,周瑞忠,刘宇航.地震动瞬时能量谱与结构位移响应关系研究[J].地震工程与工程振动,2009,29(5):46-51.(LIU Qiang,ZHOU Ruizhong,LIU Yuhang.Research on relation between instantaneous energy spectrum of earthquake ground motion and displacement response of structures[J].Journal of Earthquake Engineering and Engineering Vibration,2009,29(5):46-51.(in Chinese))
    [4]Takewaki I,Fujita K,Yoshitomi S.Uncertainties of long-period ground motion and its impact on building structural design[C]//Proceedings of the International Symposium on Engineering Lessons Learned from the2011 Great East Japan Earthquake.Tokyo:Japan Association for Earthquake Engineering,2012.
    [5]翁大根,徐植信.上海地区抗震设计反应谱研究[J].同济大学学报,1993,21(1):9-16.(WENG Dagen,XU Zhixin.A study on seismic design spectrum for Shanghai area[J].Journal of Tongji University,1993,21(1):9-16.(in Chinese))
    [6]陶能付,章在墉,李文艺.概率一致反应谱的长周期外延[J].地震工程与工程振动,1995,15(2):19-28.(TAO Nengfu,ZHANG Zaiyong,LI Wenyi.Extension of probability-consistent response spectra in long-period range[J].Earthquake Engineering and Engineering Vibration,1995,15(2):19-28.(in Chinese))
    [7]王君杰,范立础.规范反应谱长周期部分修正方法的探讨[J].土木工程学报,1998,31(6):49-55.(WANG Junjie,FAN Lichu.Modification of code response spectrum in long-period phase[J].China Civil Engineering Journal,1998,31(6):49-55.(in Chinese))
    [8]刘文光,何文福,霍达,等.隔震结构设计加速度反应谱的取值研究[J].振动与冲击,2010,29(4):181-187.(LIU Wenguang,HE Wenfu,HUO Da,et al.Modified equation for long-period part of design response of an isolated structure[J].Journal of Vibration and Shock,2010,29(4):181-187.(in Chinese))
    [9]周锡元,齐微,徐平,等.震级、震中距和场地条件对反谱特性影响的统计分析[J].北京工业大学学报,2006,32(2):97-103.(ZHOU Xiyuan,QI Wei,XU Ping,et al.Statistical analysis on the effect of magnitude,distance and site condition on response spectra[J].Journal of Beijing University of Technology,2006,32(2):97-103.(in Chinese))
    [10]李恒,李龙安,冯谦.用位移反应谱研究长周期设计地震反应谱[J].地震工程与工程振动,2012,32(4):47-53.(LI Heng,LI Longan,FENG Qian.Seismic design spectra in long-period from spectral displacement analyses[J].Journal of Earthquake Engineering and Engineering Vibration,2012,32(4):47-53.(in Chinese))
    [11]方小丹,魏琏,周靖.长周期结构地震反应的特点与反应谱[J].建筑结构学报,2014,35(3):16-23.(FANG Xiaodan,WEI Lian,ZHOU Jing.Characteristics of earthquake response for long-period structure and response spectrum[J].Journal of Building Structures,2014,35(3):16-23.(in Chinese))
    [12]GB 50011—2010建筑抗震设计规范[S].北京:中国建筑工业出版社,2010.(GB 50011—2010 Code for seismic design of buildings[S].Beijing:China Architecture&Building Press,2010.(in Chinese))
    [13]ASCE/SEI 7-10 Minimum design loads for buildings and other structures[S].Reston,VA:American Society of Civil Engineers,2010.
    [14]Eurocode 8:Design of structures for earthquake resistance[S].Brussels,Belgium:European Committee for Standardizations,CEN,2004.
    [15]吴健,高孟潭.场地相关设计反应谱特征周期的统计分析[J].中国地震,2004,20(3):263-268.(WU Jian,GAO Mengtan.Statistical analysis on corner period of site-related design spectrum[J].Earthquake Research in China,2004,20(3):263-268.(in Chinese))
    [16]周锡元,樊水荣,苏经宇.场地分类和设计反应谱的特征周期:《建筑抗震设计规范》修订简介(八)[J].工程抗震,1999(4):3-8.
    [17]Maniatakis C A,Spyrakos C C.A new methodology to determine elastic displacement spectra in the near-fault region[J].Soil Dynamics and Earthquake Engineering,2012,35:41-58.
    [18]Bommer J J,Stafford P J,Akkar S.Current empirical ground-motion prediction equations for Europe and their application to Eurocode 8[J].Bulletin of Earthquake Engineering,2009,8(1):5-26.
    [19]NIED.Strong-motion seismograph networks.[2014-11-20].http://www.kyoshin.bosai.go.jp/kyoshin/search/index_en.html.
    [20]Newmark N M,Hall W J.Earthquake spectra and design[R].Oakland,CA:Earthquake Engineering Research Center,1982.
    [21]Vidic T,Fajfar P,Fischinger M.Consistent inelastic design spectra:strength and displacement[J].Earthquake Engineering and Structure Dynamics,1994,23(4):507-521.
    [22]Lam N T K,Wilson J L,Chandler A M,Hutchinson G L.Response spectral modelling for rock sites in low and moderate seismicity regions combining velocity,displacement and acceleration predictions[J].Earthquake Engineering and Structural Dynamics,2000,29(10):1491-1525.
    [23]Chopra A K,Chintanapakdee C.Comparing response of SDF systems to near-fault and far-fault earthquake motions in the context of spectral regions[J].Earthquake Engineering and Structural Dynamics,2001,30(12):1769-1789.
    [24]Chandler A M,Lam N T K,Sheikh M N.Response spectrum predictions for potential near-field and farfield earthquakes affecting Hong Kong:soil sites[J].Soil Dynamics and Earthquake Engineering,2002,22(6):419-440.
    [25]Applied Technical Council.Tentative provisions for the development of seismic regulations for buildings[R].ATC 3-06 Report.Washington DC:U.S.Government Printing Office Place of Publication,1978.
    [26]周锡元,王广军,苏经宇.同样烈度下震级、震中距对地面运动谱特性的影响[J].地震工程动态,1983,6(1):49-55.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心