高低承台桩基地震行为差异研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
对于采用桩基的各类结构,按承台埋没于地基土体与否,可区分之高、低承台桩基形式。在许多实际工程中,因回填土或欠固结土地基的继续沉降,或因土体流变或场地震陷等后沉降效应,均可致使承台与土体接触解除,即先前按设计采用的低承台桩基可能转为高承台形式。在静力条件下,这将导致桩身产生负摩阻力而降低其部分竖向承载能力;然而,在地震作用下,通过开展离心机地震模型试验和ABAQUS计算分析发现:当承台与地基土体脱离时,桩基最大弯矩设计值将会增大,且弯矩有效深度也将变深;并且,基础(承台)周期明显延长,充分表明高、低承台桩基形式地震行为差异迥然,高承台桩基形式较之相应低承台情况更为不利,在抗震设计时应充分予以认识、考虑。
The pile foundation could be classified into the high or low types according to the position of cap relative to the surface of grounds. In many engineering practice, the settlement of unconsolidated clay or backfilled soil after construction,the soil rheology or the seismic field subsidence may lead to the separation of the cap from the clay surface, i.e., the cap was embedded originally into clay to a new state of high cap pile foundation. For the static condition,this kind of separation may result in the negative skin friction force along the piles and reduce the vertical bearing capacity of piles. However, under the seismic shaking condition, the centrifuge shaking table experiments and simulation with ABAQUS on both the cases indicated that piles underwent a higher maximum bending moment and a much larger active depth under high cap case than those at low cap case. This suggested that the embedding condition played an important role in the seismic response of pile-cap foundation. It becomes more disadvantageous when the embedding condition of the cap changes from the low cap case to the high cap case.
引文
[1]贺斌.地震作用下海洋环境码头桩–土动力相互作用分析[博士学位论文][D].武汉:武汉大学,2004.(HE Bin.Study on the dynamic interaction between pile and soil for the sea wharf in earthquake[Ph.D.Thesis][D].Wuhan:Wuhan University,2004.(in Chinese))
    [2]孔德森.桩–土相互作用计算模型及其在桩基结构抗震分析中的应用[博士学位论文][D].大连:大连理工大学,2004.(KONG Desen.Study on dynamic computational model of pile-soil interaction and its application in seismic response analysis of pile-supported structures[Ph.D.Thesis][D].Dalian:Dalian University of Technology,2004.(in Chinese))
    [3]戚玉亮.地基土–群桩–悬索大桥体系抗震动力相互作用数值模拟与理论研究[博士学位论文][D].上海:同济大学,2010.(QI Yuliang.Numerical simulation and theoretical study on the seismic interaction of soil-pile group-suspension bridge system[Ph.D.Thesis][D].Shanghai:Tongji University,2010.(in Chinese))
    [4]王东栋.改进的广义剪切位移法在桥梁桩基沉降计算中的应用与研究[博士学位论文][D].上海:同济大学,2011.(WANG Dongdong.Application and research of improved generalized shear displacement method in bridge pile foudation settlement calculation[Ph.D.Thesis][D].Shanghai:Tongji University,2011.(in Chinese))
    [5]曾庆有,周健,屈俊童.考虑应力应变时间效应的桩基长期沉降计算方法[J].岩土力学,2005,26(8):1 283–1 287.(ZENG Qingyou,ZHOU Jian,QU Juntong.Method for long-term settlement computation of pile foundation in consideration of time effect of stress-strain relationship[J].Rock and Soil Mechanics,2005,26(8):1 283–1 287.(in Chinese))
    [6]贺武斌.静荷载下单桩沉降的时间效应研究[博士学位论文][D].杭州:浙江大学,2003.(HE Wubin.Study on the time effect of the settlement of single pile under static load[Ph.D.Thesis][D].Hangzhou:Zhejiang University,2003.(in Chinese))
    [7]王新泉,陈永辉,安永福,等.塑料套管现浇混凝土桩倾斜对承载性能影响的模型试验研究[J].岩石力学与工程学报,2011,30(4):834–842.(WANG Xinquan,CHEN Yonghui,AN Yongfu,et al.Model test study of effect of inclination on bearing behaviors of plastic tube cast-in-place concrete pile[J].Chinese Journal of Rock Mechanics and Engineering,2011,30(4):834–842.(in Chinese))
    [8]刘汉龙,雍君,丁选明,等.现浇X型混凝土桩的荷载传递机制初探[J].防灾减灾工程学报,2009,29(3):267–271.(LIU Hanlong,YONG Jun,DING Xuanming,et al.Study on load transfer mechanism of cast-in-place X-shaped piles[J].Journal of Disaster Prevention and Mitigation Engineering,2009,29(3):267–271.(in Chinese))
    [9]YANG M,SUN Q,LI W C,et al.Three-dimensional finite element analysis on effects of tunnel construction on nearby pile foundation[J].Journal of Central South University of Technology,2011,18(3):909–916.
    [10]盛春陵,王守超,李仁民.大直径嵌岩后注浆钻孔灌注桩试桩分析[J].岩土工程学报,2012,34(增1):567–573.(SHENG Chunling,WANG Shouchao,LI Renmin.Pile test analysis of large-diameter rock grouting bored piles[J].Chinese Journal of Geotechnical Engineering,2012,34(Supp.1):567–573.(in Chinese))
    [11]中华人民共和国行业标准编写组.JGJ94—2008建筑桩基技术规范[S].北京:中国建筑工业出版社,2008.(The Professional Standards Compilation Group of People?s Republic of China.JGJ94—2008Technical code for building pile foundations[S].Beijing:China Architecture and Building Press,2008.(in Chinese))
    [12]史佩栋.桩基工程手册(桩和桩基础手册)[M].北京:人民交通出版社,2008:205–285.(SHI Peidong.Handbook for pile foundation engineering[M].Beijing:China Communications Press,2008:205–285.(in Chinese))
    [13]张雁,刘金波.桩基手册[M].北京:中国建筑工业出版社,2009:134–186.(ZHANG Yan,LIU Jinbo.Handbook for pile foundation[M].Beijing:China Architecture and Building Industry Press,2009:134–186.(in Chinese))
    [14]马亢,裴建良.桩筏基础–土动力相互作用的离心模型试验研究[J].岩石力学与工程学报,2011,30(7):1 488–1 495.(MA Kang,PEI Jianliang.A study on the dynamic interaction between pile-raft foundation and soft clay during earthquakes by centrifuge tests[J].Chinese Journal of Rock Mechanics and Engineering,2011,30(7):1 488–1 495.(in Chinese))
    [15]马亢,许强.桩–筏–土体系的地震软化效应及ABAQUS计算分析研究[J].岩石力学与工程学报,2012,31(增1):1 126–1 132.(MA Kang,XU Qiang.A study on the seismic softening behavior and ABAQUS simulation of pile-raft-clay system[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(Supp.1):1 126–1 132.(in Chinese))
    [16]TABESH A.Lateral seismic analysis of piles[Ph.D.Thesis][D].Sydney,Australia:University of Sydney,1997.
    [17]POULOS H G,DAVIS E H.Pile foundation analysis and design[M].[S.l.]:John Wiley and Sons,1980:455–481.
    [18]NIKOLAOU A,MYLONAKIS G,GAZETAS G.Kinematic bending moments in seismically stressed piles[R].Buffalo:State University of New York,NCEER–95–0022USA,1995:122–157.
    [19]NIKOLAOU S,MYLONAKIS G,GAZETAS G,et al.Kinematic pile bending during earthquakes:analysis and field measurements[J].Geotechnique,2001,51(5):425–440.
    [20]GAZETAS G.Seismic response of end-bearing single piles[J].Soil Dynamics and Earthquake Engineering,1984,3(2):82–93.
    [21]BANERJEE S,GOH S H,LEE F H.Response of soft clay strata and clay-pile-r systems to seismic shaking[J].Journal of Earthquake and Tsunami,2007,1(3):233–255.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心