采矿诱发地震三个特征震源深度的探讨
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
为探索煤矿矿震(冲击地压)的机制,通过现场高精度微震观测及震源调查资料,分析震源的空间秩序,提出煤矿矿震存在"三个特征震源深度"问题,即初始震源深度、采空区顶板上限临界震源深度和底板下限临界震源影响深度。这三个特征震源深度取决于地面和震源、采空区顶板及底板和震源的相对距离。对三个特征震源深度的力学机制进行分析:用煤体抗压强度和施加于煤体作用力强度的幂律关系解释初始震源深度;用拉、压不同模量梁板弯曲模型和煤体强度与远场最大主应力比值的两种模式解释采空区顶板上限临界震源深度;用卸荷弹性恢复与侧向泊松效应复合作用和断层活动解释底板下限临界震源影响深度。最后讨论三个特征震源深度在采矿工程安全中的应用。
In the current study,three characteristic focal depths of mining-induced seismicity in coalmines,i.e. initiation depth,roof upper-bound depth,and floor lower-bound influence depth,are identified from field microseismic monitoring data. These characteristic depths depend on the relative distance between the hypocenter of a seismic event and ground surface or the location of the roof and floor of the coal seam. The initiation depth is the one beyond which rockbursts will happen. The roof upper-bound depth is defined as the depth of the seismic events located above the roof whose magnitudes are greater than certain thresholds;and the floor lower-bound influence depth is defined as the difference between the depth of the observed maximum seismic event below the floor and the depth of the floor. The mechanisms of the characteristic focal depths are also discussed. The initiation depth is explained by a power law model considering coal strength and the stress acting on the coal body,the roof upper-bound depth is explained by a bending model of a thick plate or beam;and the floor lower-bound influence depth is explained by the combined effect of elastic rebound due to unloading and the effect of Poisson′s ratio as well as the influence of active faults. Finally,the impact of understanding the characteristic focal depths on mining safety is discussed. It is expected that a better understanding of these characteristic depths will facilitate the mitigation and control of mining-induced seismic hazards in underground coalmines.
引文
[1]潘一山,赵扬锋,马瑾.中国矿震受区域应力场影响的探讨[J].岩石力学与工程学报,2005,24(16):2847–2853.(PAN Yishan,ZHAO Yangfeng,MA Jin.Discussion on rockburst influenced by regional stress field in China[J].Chinese Journal of Rock Mechanics and Engineering,2005,24(16):2847–2853.(in Chinese))
    [2]何满潮.深部的概念体系及工程评价指标[J].岩石力学与工程学报,2005,24(16):2854–2858.(HE Manchao.Conception system and evaluation indexes for deep engineering[J].Chinese Journal of Rock Mechanics and Engineering,2005,24(16):2854–2858.(in Chinese))
    [3]勾攀峰,汪成兵,韦四江.基于突变理论的深井巷道临界深度[J].岩石力学与工程学报,2004,23(24):4137–4141.(GOU Panfeng,WANG Chengbing,WEI Sijian.A study on the critical depth of deep entry with catastrophe theory[J].Chinese Journal of Rock Mechanics and Engineering,2004,23(24):4137–4141.(in Chinese))
    [4]李铁,蔡美峰,张少泉,等.我国的采矿诱发地震[J].东北地震研究,2005,21(3):1–26.(LI Tie,CAI Meifeng,ZHANG Shaoquan,et al.Mining-induced seismicity in China[J].Seismological Research of Northeast China,2005,21(3):1–26.(in Chinese))
    [5]魏锦平,靳钟铭,杨彦风,等.坚硬顶板控制的数值模拟[J].岩石力学与工程学报,2002,21(增2):2488–2491.(WEI Jinping,JIN Zhongming,YANG Yanfeng,et al.Numerical simulation of hard roof control[J].Chinese Journal of Rock Mechanics and Engineering,2002,21(Supp.2):2488–2491.(in Chinese))
    [6]纪玉杰.北京西山侏罗纪煤田矿震与地质灾害的关系[J].北京地质,2002,14(3):11–21.(JI Yujie.The relationship between mining-induced earthquake and geological disaster in Jurassic coalfield of Western Hill,Beijing[J].Beijing Geology,2002,14(3):11–21.(in Chinese))
    [7]缪协兴,孙海,吴志刚.徐州东部软岩矿区冲击矿压机制分析[J].岩石力学与工程学报,1999,18(4):428–431.(MIAO Xiexing,SUN Hai,WU Zhigang.Mechanism analysis of rockburst in softrock mines in eastern Xuzhou[J].Chinese Journal of Rock Mechanics and Engineering,1999,18(4):428–431.(in Chinese))
    [8]宋维源,章梦涛,张芳.房山矿无冲击倾向煤层冲击地压的成因分析[J].辽宁工程技术大学学报(自然科学版),2001,20(4):448–449.(SONG Weiyuan,ZHANG Mengtao,ZHANG Fang.Results analysis of rockburst in no impact trend coal layer in Fangshan mine[J].Journal of Liaoning Technical University(Natural Science),2001,20(4):448–449.(in Chinese))
    [9]车用太,王琦,黄积刚,等.矿震及其前兆初探[J].中国地震,1993,9(4):334–340.(CHE Yongtai,WANG Qi,HUANG Jigang,et al.Mining earthquake and its precursor[J].Earthquake Research in China,1993,9(4):334–340.(in Chinese))
    [10]姚文娟,叶志明.不同模量弯压柱的解析解[J].应用数学和力学,2004,25(9):901–909.(YAO Wenjuan,YE Zhiming.Analytical solution of bending-compression column using different tension-compression moduli[J].Applied Mathematics and Mechanics,2004,25(9):901–909.(in Chinese))
    [11]张晓春.中厚软岩板静载弯曲时中面特性的时间相关分析[J].岩石力学与工程学报,2004,23(9):1424–1427.(ZHANG Xiaochun.Time-dependency of neutral surface feature of mid-thick soft rock plate under static load bending[J].Chinese Journal of Rock Mechanics and Engineering,2004,23(9):1424–1427.(in Chinese))
    [12]杨同,王宝学,高谦,等.岩石弯曲拉伸试验研究[J].勘察科学技术,2004,(6):3–5,53.(YANG Tong,WANG Baoxue,GAO Qian,et al.Study on bending tensile tests of rock samples[J].Site Investigation Science and Technology,2004,(6):3–5,53.(in Chinese))
    [13]HORII H,NEMAT-NASSER S.Overall moduli of solids with microcracks:load-incluced anisotropy[J].J.Mech.Phys.Solids,1983,(31):155–177.
    [14]CAI M,HORII H.A constitutive model of highly jointed rock masses[J].Mech.of Materials,1992,13(3):217–246.
    [15]ANDERSSON J,STR?M A,SVEMAR C,et al.What requirements does the KBS–3repository make on the host rock?[R].Stockholm:Swesdish Nuclear Fuel and Waste Management Company,2001.
    [16]董瑞树,许世杰.浅谈矿震灾害——以台吉煤矿为例[J].灾害学,1990,(1):65–66.(DONG Ruishu,XU Shijie.On the hazard of mining-induced seismicity—a case study at Taijie coalmine[J].Journal of Catastrophology,1990,(1):65–66.(in Chinese))

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心