地震触发砂土液化总应力判别法──以北京密云水库白河主坝震害为例
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
在二维应力状态下,地震在土体中不仅产生动水平剪应力τνh,而且引起在一般情况下不可忽略的竖向动正应力σv及水平动正应力σh。在研究地震触发砂土液化的应力条件及液化判别方法时应考虑这三种动应力的联合作用.本文基于莫尔-库伦强度准则,采用总应力方法,研究能够考虑地震动水平剪应力τvh、竖向动正应力σv及水平动正应力σh共同作用的砂土液化判别准则,并且以北京密云水库白河主坝震害为例,说明这种液化判别准则的有效性及其使用方法。
In the case of two-dimensional plane stress condition, the cyclic stress induced by earthquake in earth includes horizontal tangential cyclic shearing stress, τvh, vertical cyclic normal stress, σy, and horizontal cyclic normal stress, σh. These three components of the cyclic stress are the main factors complicating the procedures for assessing the deformation or stability of earth and earth structures during earthquake. And it is required that the cyclic stress condition and the assessing criterion of sand liquefaction arising from earthquake are researched by thinking over the joint action of them. In this paper, in view of Mohr-Coulomb's strength criterion, the assessing criterion of sand liquefaction arising from earthquake is studies by the method of comprehensive stress, that includes the joint action of horizontal tangential cyclic shearing stress, τvh, vertical cyclic normal stress, σy, and horizontal cyclic normal stress, σh. The effective function and operation method of the assessing criterion of sand liquefaction are demonstrated by the earthquake damage to Baihe principal dam of Miyun reservoir in Beijing, China.
引文
[1]凌贤长,张克绪.在二维应力状态下土体地震动偏应力特征[J].地震工程与工程振动,1999,19(3):74-78.
    [2]凌贤长,张克绪.在二维应力状态下地震触发砂土液化应力条件[J].地震工程与工程振动,2000,20(2):85—91.
    [3] 顾淦臣.土石坝地震工程[M].南京:河海大学出版社,1989.
    [4] Mahmood-Zadegan B et al. Cone penetration testing for in situ evaluation of liquefaction potential of sands[J].Proc.,Geotech. Engrg .Congr., Geotech. Spec. Publ No.27, ASCE, Reston, va., 1991, 2:64-72.,
    [5] Stark T D and Olson S M. Liquefaction distance using CPT and field case histories[J]. Geotech. Engrg. ASCE, 1995,121(12): 107 - 114.
    [6] Funahara H, Fujii S, Tamura S. Numerical simulation of pile failure in liquefied soil observed in large-scaleShaking Table Test[J]. 12WCEE[A]. New Zealand, 2000, Paper No.0927: 53-59.
    [7] Ganve T, Yamazaki F, Ishizak H et al. Response analysis of the HIGASHI-KOBE bridge and surrounding soil in the 1995 HYOGOKEN-NANBU Earthquake[J]. Earthquake Engng. Struct. Dyn., 1998, 27(3): 557-576.
    [8] Ohtsuki A, Fukutake K, Sato M. Analytical and centrifuge studies of pile groups in liquefiable soil before and after siteremediation[J]. Earthquake Engng. Struct. Dyn., 1998, 27(l):l - 14.
    [9] Tamura, Suzuki Y, Tsuchiya T et al. Dynamic response and failure mechanisms of a pile foundation during soilliquefaction by shaking table test with a large-scale laminar shear box[A]. 12WCEE[C]. New Zealand, 2000, Paper No.0903: 157-169.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心