岩盐断层带摩擦滑动的速度依赖性转换及其地震学意义
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
为了深入理解断层带摩擦滑动速度依赖性转换及其机制,利用双轴摩擦实验对干燥及含水条件下岩盐断层带摩擦的速度依赖性进行了实验研究,并观测了摩擦滑动过程中的声发射,分析了断层带的微观结构.实验结果表明,干燥岩盐断层带在0.1~100μm/s的速度范围内表现为速度弱化,增大σ2会使断层带向速度强化转变;含水条件下岩盐断层带在1~100μm/s的速度范围内表现为速度弱化,而在0.1~0.01μm/s的速度范围内表现为速度强化,速度依赖性转换出现在0.1~1μm/s,其中断层表现为振荡或应力释放时间较长的黏滑事件;岩盐断层带在干燥条件下表现出很强的声发射活动,每个黏滑均对应一丛声发射事件,而在含水条件下一次黏滑只对应一个声发射事件.显微观察表明,局部化的脆性破裂是速度弱化域的主要变形机制,分布式的碎裂流动是干燥岩盐断层带在速度强化域的变形机制,颗粒边界迁移以及压溶作用的塑性变形是含水条件下岩盐断层带在速度强化域的主要变形机制,而脆性破裂和塑性变形共同控制着速度依赖性转换域断层带的变形.水的存在促进岩盐发生塑性变形,进而导致断层带从速度弱化向速度强化转换.上述结果有助于理解断层带上地震活动的特征和慢地震的机制.
In order to better understand the velocity-dependence of fault frictional sliding and its mechanism,the velocity-dependence of friction for dry and wet halite gouge was studied by using biaxial friction configuration,the acoustic emission produced during the frictional sliding was recorded,and the microstructure of gouge zone was observed.The experiments show that dry halite gouge behaves velocity weakening at the velocity of 0.1~100 μm/s,and increasing σ2 can enhance the transition to velocity strengthening.Wet halite gouge behaves velocity weakening at high velocity of 1~100 μm/s and velocity strengthening at low velocity of 0.1~0.01 μm/s,and the velocity-dependence transition occurs at velocity of 0.1~1 μm/s and behaves oscillation or stick-slip with much longer time than that in the velocity weakening region.Dry halite gouge shows strong acoustic emission(AE) activity and each stick-slip event corresponds to a cluster of AE events,while each stick-slip event is accompanied by only one AE event for wet halite gouge.The microscope observation indicates that localized brittle deformation is predominant in the velocity weakening region,and distributed cataclastic flow is the mechanism in the velocity strengthening region for dry halite gouge,while plastic deformation including grain boundary migration and pressure solution is predominant in the velocity strengthening region for wet halite gouge.Additionally,both brittle deformation and plastic deformation exist in the transitional region.The existence of water enhances the plastic deformation of halite gouge and thus causes the transition from velocity weakening to velocity strengthening.The results described above are helpful for understanding seismicity along fault zone and mechanism of slow earthquakes.
引文
[1]Dieterich J H.Modelling of rock friction:1.Experimentalresults and constitutive equations.J.Geophys.Res.,1979,84(B5):2161-2168.
    [2]Ruina A L.Slip instability and state variable friction laws.J.Geophys.Res.,1983,88(B12):10359-10370.
    [3]Shibazaki B,Lio Y.On the physical mechanism of silent slipevents along the deeper part of the seismogenic zone.Geophy.Res.Lett.,2003,30:1489,doi:10.1029/2003GL01747.
    [4]Liu Y J,Rice J R.Aseismic slip transients emergespontaneously in three-dimensional rate and state modeling ofsubduction earthquakes sequences.J.Geophys.Res.,2005,110:Bo8307,doi:10.1029/2004JB003424.
    [5]Dieterich J H.Time-dependent friction and the mechanics ofstick slip.Pure Appl.Geophys.,1978,116(4-5):790-806.
    [6]Dieterich J H,Conrad G.Effect of Humidity on Time-andvelocity-dependent friction in rocks.J.Geophys.Res.,1984,89(B6):4196-4202.
    [7]Shimamoto T.Transition between frictional slip and ductileflow for halite shear zones at room temperature.Science,1986,231(4739):711-714.
    [8]Marone C,Raleigh C B,Scholz C H.Frictional behavior andconstitutive modeling of simulated fault gouge.J.Geophys.Res.,1990,95(B5):7007-7025.
    [9]Blanpied M L,Lockner D A,Byerlee J D.Fault stabilityinferred from granite sliding experiments at hydrothermalconditions.Geophy.Res.Lett.,1991,18(4):609-612.
    [10]Blanpied M L,Lockner D A,Byerlee J D.Frictional slip ofgranite at hydrothermal conditions.J.Geophys.Res.,1995,100(B7):13045-13064.
    [11]Moore D E,Lockner D A,Summers R,et al.Strength ofchrysotile-serpentinite gouge under hydrothermal conditions:can it explain a weak San Andreas fault.Geology,1996,24(11):1041-1044.
    [12]Moore D E,Lockner D A,Ma S L,et al.Strengths ofserpentinite gouges at elevated temperatures.J.Geophys.Res.,1997,102(B7):14787-14801.
    [13]马胜利,Lockner D,Moore D等.水热作用条件下蛇纹石断层泥的摩擦强度和速度依赖性及其地震地质意义.地震地质,1997,19(2):171-178.Ma S L,Lockner D,Moore D,et al.Frictional strength andvelocity-dependent of serpentine gouges under hydrothermalconditions and their seismogelogical implications.Seismologyand Geology(in Chinese),1997,19(2):171-178.
    [14]Shimamoto T.The origin of S-C mylonites and a new fault-zone model.Journal of Structural Geology,1989,11(1-2):51-64.
    [15]Reinen L A,Weeks J D,Tullis T E.The frictional behaviorof lizardite and antigorite serpentinites:Experiments,constitutive models,and implications for natural faults.PureAppl.Geophys.,1994,143(1-3):318-358.
    [16]Bos B,Peach C J,Spiers C J.Slip behavior of simulatedgouge-bearing faults under conditions favoring pressuresolution.J.Geophys.Res.,2000,105(B7):16699-16717.
    [17]Bos B,Spiers C J.Experimental investigation into themicrostructural and mechanical evolution of phyllosilicate-bearing fault rock under conditions favouring pressuresolution.Journal of Structural Geology,2001,23(8):1187-1202.
    [18]Bos B,Spiers C J.Frictional-viscous flow of phyllosilicate-bearing fault rock:microphysical model and implications forcrustal strength profiles.J.Geophys.Res.,2002,107(B2):2028,doi:10.1029/2001JB000301.
    [19]Niemeijer A R,Spiers C J.Velocity dependence of strengthand healing behaviour in simulated phyllosilicate-bearing faultgouge.Tectonophysics,2006,427(1-4):231-253.
    [20]Moore D E,Lockner D A.Talc friction in the temperaturerange25-400℃relevance for fault-zone weakening.Tectonophysics,2008,449(1-4):120-132.
    [21]Sone H,Shimamoto T,Moore D E.Frictional properties ofsaponite-rich gouge from a serpentinite-bearing fault zonealong the Gokasho-Arashima Tectonic Line,central Japan.Journal of Structural Geology,2011,38:172-182.
    [22]den Hartog S A M,Peach C J,de Winter D A M,et al.Frictional properties of megathrust fault gouges at low slidingvelocities:New data on effects of normal stress andtemperature.Journal of Structural Geology,2012,38:156-171.
    [23]He C R,Yao W M,Wang Z L,et al.Strength and stabilityof frictional sliding of gabbro gouge at elevated temperatures.Tectonophysics,2006,427(1-4):217-229.
    [24]He C R,Wang Z L,Yao W M.Frictional sliding of gabbrogouge under hydrothermal conditions.Tectonophysics,2007,445(3-4):353-362.
    [25]谭文彬,何昌荣.高温高压及干燥条件下斜长石和辉石断层泥的摩擦滑动研究.地学前缘,2008,15(3):279-286.Tan W B,He C R.Frictional sliding of pyroxene andplagioclase gouges in gabbro under elevated temperature anddry condition.Earth Science Frontiers(in Chinese),2008,15(3):279-286.
    [26]罗丽,何昌荣.热水条件下斜长石和辉石断层泥的摩擦滑动研究.地震地质,2009,32(1):84-96.Luo L,He C R.Frictional sliding of pyroxene and plagioclasegouges under hydrothermal conditions.Seismology andGeology(in Chinese),2009,31(1):84-96.
    [27]兰彩云,何昌荣,姚文明等.热水条件下角闪石断层泥的摩擦滑动性质——与斜长石断层泥的对比.地球物理学报,2010,53(12):2929-2937.Lan C Y,He C R,Yao W M,et al.Frictional sliding ofhornblende gouge as compared with plagioclase gouge underhydrothermal conditions.Chinese J.Geophys.(in Chinese),2010,53(12):2929-2937.
    [28]何昌荣,Verberne B A,Spiers C J.龙门山断裂带沉积岩和天然断层泥的摩擦滑动性质与启示.岩石力学与工程学报,2011,30(1):113-131.He C R,Verberne B A,Spiers C J.Frictional properties ofsedimentary rocks and natural fault gouge from Longmenshanfault zone and their implication.Chinese Journal of RockMechanics and Engineering(in Chinese),2011,30(1):113-131.
    [29]缪阿丽,马胜利,周永胜.硬石膏断层带摩擦稳定性转换与微破裂特征的实验研究.地球物理学报,2010,53(11):2671-2680.Miao A L,Ma S L,Zhou Y S.Experimental study onfrictional stability transition and micro-fracturing characteristicsfor anhydrite fault zones.Chinese J.Geophys.(in Chinese),2010,53(11):2671-2680.
    [30]Sibson R H.Earthquakes and rock deformation in crustalfault zones.Aann.Rev.Earth Planet.Sci.,1986,14(1):149-175.
    [31]刘力强,马胜利,马瑾等.岩石构造对声发射统计特征的影响.地震地质,1999,21(4):377-386.Liu L Q,Ma S L,Ma J,et al.Effect of rock structure onstatistic characteristics of acoustic emission.Seismology andGeology(in Chinese),1999,21(4):377-386.
    [32]Bartlett W L,Friedman M,Logan J M.Experimental foldingand faulting of rocks under confining pressure.Tectonophysics,1981,79(3-4):255-277.
    [33]Byerlee J D.Friction of rocks.Pure Appl.Geophys.,1978,116(4-5):615-626.
    [34]肖军华,刘建坤,侯永峰等.岩盐用作路基填料的力学性质试验.工程地质学报,2007,15(1):119-123.Xiao J H,Liu J K,Hou Y F,et al.Experimentla study onmechanical properties of rock-salt for subgrand fill material.Journal of Engineering Geology(in Chinese),2007,15(1):119-123.
    [35]周永胜,何昌荣,黄晓葛等.基性岩流变的复杂性与成分对岩石流变影响的实验研究.地学前缘,2009,16(1):1-12.Zhou Y S,He C R,Huang X G,et al.Rheologicalcomplexity of mafic rocks and the effect of mineral componenton creep of rocks.Earth Science Frontiers(in Chinese),2009,16(1):1-12.
    [36]He C R,Zhou Y S,Sang Z N.An experimental study onsemi-brittle and plastic rheology of Panzhihua gabbro.Science in China(Series D),2003,46(7):730-742.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心