格构锚固边坡地震响应的振动台试验研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
设计并完成比例尺为1:8的边坡大型振动台模型试验,研究格构锚杆框架支护边坡在汶川波水平向、竖直向和水平竖直双向激振下的动力响应特性。研究结果表明:3种激振方式都会使边坡产生水平和竖直向加速度动力响应,且呈现出明显的非线性特征。水平向激振主要产生水平向加速度放大效应,边坡上方动力响应强度比中下方动力响应强度明显,内部动力响应强度比坡面动力响应强度明显;竖直向激振主要产生竖直向加速度放大效应,边坡中上方坡内动力响应强度大于坡面动力响应强度,边坡下方坡内动力响应强度则稍弱于坡面动力响应强度;加速度动力响应峰值放大系数(PGAA)随坡高也呈显著的非线性特征:在水平向激振下,水平和竖直向PGAA都是随坡高非线性增大;在竖直向激振下,水平向PEAA和激振加速度峰值AZmax≥0.400g时的竖直向PGAA随坡高非线性增大;在水平和竖直双向激振下,边坡中下方水平向PGAA和AXmax≥0.400g时竖直向PGAA随坡高非线性增大。3种激振方式下动位移响应主要出现在水平方向上,且呈现出非线性特征。水平向或水平竖直双向激振下,主要产生水平方向的永久位移,其量值接近但方向相反;竖直向激振下产生的水平和竖直向永久位移较小。3种激振方式下主要产生水平方向动土压力响应,响应程度比较接近,呈现出非线性特征,动土压力峰值的最大值都出现在坡中。
A slope model with the geometric scale of 1:8 was designed and a large-scale shaking table model test was performed to study the dynamic response characteristics of acceleration,displacement and earth pressure of the slope with lattice framed anchor structure during X,Z,and XZ direction excitation of Wenchuan seismic wave respectively.The results show that three excitations can make slope produce the dynamic acceleration responses along horizontal and vertical directions and the responses present obvious non-linearity.During the horizontal excitation,the acceleration amplification effect of slope appears mainly in the horizontal direction,and the response intensity of the slope upper is greater than that of the middle-lower part,and the internal slope is greater than that of slope surface.During the vertical excitation,the acceleration amplification effect of slope appears mainly at the vertical direction,the internal response intensity at the middle-upper slope is greater than slope surface,and the lower part of the slope is opposite.The peak ground acceleration amplification(PGAA) effect with the height of slope also exhibits non-linearity: during the horizontal excitation,PGAAs along X-and Z-directions increase with slope height nonlinearly;during the vertical excitation,X-PGAA and Z-PGAA at AZmax≥0.400g increase with slope height nonlinearly;during XZ excitation,X-PGAA at middle-lower part of slope and Z-PGAA at AXmax≥0.400g increase with slope height nonlinearly.During three excitations,seismic displacement response appears mainly at horizontal direction,and presents obvious non-linearity.During X-or XZ excitations,the permanent displacement of lattice frame is presented mainly at the X direction,and the two kinds of permanent displacements are equal approximately but in the opposite direction.The X-and Z-permanent displacements during the vertical excitation are small.The seismic earth pressure response at X direction is mainly presented non-linearly during three directions excitation,and the response intensity is closer.The maximum of peak seismic earth pressure is only at the middle part of slope.
引文
[1]薛守义.高等土力学[M].北京:中国建材工业出版社,2007:211-216.XUE Shou-yi.Advanced soil mechanics[M].Beijing:China Building Materials Industry Press,2007:211-216.
    [2]黄浩华.地震模拟振动台的设计与应用技术[M].北京:地震出版社,2008:315-340.HUANG Hao-hua.The design and application technology on earthquake simulation vibrating table[M].Beijing:Seismological Press,2008:315-340.
    [3]孔宪京,李永胜,邹德高,等.加筋边坡振动台模型试验研究[J].水力发电学报,2009,28(5):152-157.KONG Xian-jing,LI Yong-sheng,ZOU De-gao,et al.Shaking table model tests on soil slope reinforced with geo-grid[J].Journal of Hydroelectric Engineering,2009,28(5):152-157.
    [4]Tinawi R,Leger P,Leclerc M,et al.Seismic safety of gravity dams:from shake table experiments to numerical analyses[J].Journal of Structural Engineering,2000(4):518-529.
    [5]Lin M L,Wang K L.Seismic slope behavior in a large-scale shaking table model test[J].Engineering Geology,2006,86:118-133.
    [6]Li Q S,Li Z N,Li G Q,et al.Experimental and numerical seismic investigations of the Three Gorges dam[J].Engineering Structures,2005,27(4):501-513.
    [7]Pitilakis D,Dietz M,Wood D M,et al.Numerical simulation of dynamic soil–structure interaction in shaking table testing[J].Soil Dynamics and Earthquake Engineering,2008,28(6):453-467.
    [8]Anastasopoulos I,Georgarakos T,Georgiannou V,et al.Seismic performance of bar-mat reinforced-soil retaining wall:Shaking table testing versus numerical analysis with modified kinematic hardening constitutive model[J].Soil Dynamics and Earthquake Engineering,2010,30(10):1089-1105.
    [9]Lee K Z Z,Chang N Y,Ko H Y.Numerical simulation of geosynthetic-reinforced soil walls under seismic shaking[J].Geotextiles and Geomembranes,2010,28(4):317-334.
    [10]刘小生,王钟宁,汪小刚,等.面板坝大型振动台模型试验与动力分析[M].北京:中国水利水电出版社,2005:9-20.LIU Xiao-sheng,WANG Zhong-ning,WANG Xiao-gang,et al.Large scale shaking table model tests and dynamic analysis of concrete face rockfill dam[M].Beijing:China Water Power Press,2005:9-20.
    [11]林皋,朱彤,林蓓.结构动力模型试验的相似技巧[J].大连理工大学学报,2000,40(1):1-8.LIN Gao,ZHU Tong,LIN Bei.Similarity technique for dynamic structural model test[J].Journal of Dalian University of Technology,2000,40(1):1-8.
    [12]Iai,Susumu.Similitude for shaking table tests on soil-structure-fluid model in 1-g gravitational field[J].Soils and Foundations,1989,29(1):105-118.
    [13]GB 5001—2001,建筑抗震设计规范[S].GB 5001—2001,Code for seismic design of buildings[S].
    [14]GB 50111—2006,铁路工程抗震设计规范[S].GB 50111—2006,Code for seismic design of railway engineering[S].
    [15]周靖,陈凯亮,罗高杰.速度脉冲型地震地面运动强度表征参数评估[J].振动与冲击,2010,29(7):153-158.ZHOU Jing,CHEN Kai-liang,LUO Gao-jie.Evaluation of intensity measures for pulse-like earthquake ground motions[J].Journal of Vibration and Shock,2010,29(7):153-158.
    [16]陈跃庆,吕西林,李培振,等.不同土性的地基-结构动力相互作用振动台模型试验对比研究[J].土木工程学报,2006,39(5):57-64.CHEN Yue-qing,LU Xi-lin,LI Pei-zhen,et al.Comparative study on the dynamic soil-structure interaction system with various soils by using shaking table model tests[J].China Civil Engineering Journal,2006,39(5):57-64.
    [17]许强,刘汉香,邹威,等.斜坡加速度动力响应特性的大型振动台试验研究[J].岩石力学与工程学报,2010,29(12):2420-2428.XU Qiang,LIU Han-xiang,ZOU Wei,et al.Large-scale shaking table test study of acceleration dynamic response characteristics of slopes[J].Chinese Journal of Rock Mechanics and Engineering,2010,29(12):2420-2428.
    [18]陈强,杨长卫,张建经,等.“5.12”汶川地震中高大加筋土挡墙破坏机理研究[J].铁道建筑,2010(9):73-77.CHEN Qiang,YANG Chang-wei,ZHANG Jian-jing,et al.Study on damage mechanics of high reinforced earth retaining wall under“5.12”Wenchuan Earthquake[J].Railway Construction,2010,(9):73-77.
    [19]徐光兴,姚令侃,高召宁,等.边坡动力特性与动力响应的大型振动台模型试验研究[J].岩石力学与工程学报,2008,27(3):624-632.XU Guang-xing,YAO Ling-kan,GAO Zhao-ning,et al.Large-scale shaking table model test study on dynamic characteristics and dynamic responses of slope[J].Chinese Journal of Rock Mechanics and Engineering,2008,27(3):624-632.
    [20]李昀,杨果林,林宇亮.水平地震作用下绿色加筋格宾挡土墙动力特性试验研究[J].中南大学学报:自然科学版,2010,41(1):347-352.LI Yun,YANG Guo-lin,LIN Yu-liang.Dynamic characteristics of green reinforced gabion walls subjected to horizontal seismic loading[J].Journal of Central South University:Science and Technology,2010,41(1):347-352.
    [21]栾茂田,李湛,范庆来.土石坝拟静力抗震稳定性分析与坝坡地震滑移量估算[J].岩土力学,2007,28(2):224-230.LUAN Mao-tian,LI Zhan,FAN Qing-lai.Analysis and evaluation of pseudo-static aseismic stability and seism-induced sliding movement of earth-rock dams[J].Rock and Soil Mechanics,2007,28(2):224-230.
    [22]Kramer S L,Smith M W.Modified Newmark model for seismic displacements of compliant slopes[J].Journal of Geotechnical and Geoenvironmental Engineering,ASCE,1997,123(7):635-644.
    [23]林彤.离心模型试验在超高加筋土挡墙中的应用研究[J].土木工程学报,2004,37(2):43-46.LIN Tong.Study on the application of centrifuge modeling test to super-elevation reinforced earth retaining wall[J].China Civil Engineering Journal,2004,37(2):43-46.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心