圆柱形储罐考虑桩土相互作用地震响应的简化分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
以Penzien集中质量模型为基础建立了某圆柱形锚固储罐考虑桩-土-罐相互作用及罐壁柔性的简化分析模型,采用有限元软件ABAQUS建立了该桩-土-罐力学模型,分析了其自振特性及在水平基岩波激励下的动力响应。分析结果得知,相比于刚性地基,考虑桩土相互作用的储液罐对流频率几乎不变,第一阶柔性脉动频率略有减小;在动力响应方面,储液罐基底剪力和力矩最大值略有减小,但其对流分量和刚性脉动分量最大值均有增大,所以本文建议在储液罐进行设计时应充分考虑桩土相互作用后储罐动力响应的有利和不利变化,从整体上把握来确保储液罐的抗震安全性。
Based on Penzien's lumped mass model,the simplified mechanical model of a cylindrical anchored storage tank which has taken into account the effects of soil-pile interaction and tank wall flexibility was established,the FEM(finite element method) software ABAQUS was used to establish the soil-pile-tank mechanical model,the natural vibration properties and dynamic response under bedrock seismic wave was analyzed.Comparing with the resultant of storage tank mounted on rigid foundation,when considering the soil-pile interaction,the convective frequency was almost invariant,the first order flexible impulsive frequency was reduced slightly;for dynamic response,the maximum value of total base shear force and moment of the storage tank was decreased slightly,but the maximum value of its convective component and rigid impulsive component were increased.Therefore,the paper suggests that the favorable and unfavorable changes of dynamic response after considering soil-pile interaction should be fully considered in design of storage tank to ensure the seismic safety.
引文
[1]张瑞甫,翁大根,倪伟波,等.特大型LNG储罐抗(减)震研究发展综述[J].结构工程师,2010,26(5):164-171.
    [2]HOSKINS L M,JACOBSEN L S.Water pressure in a tank caused by a simulated earthquake[J].Bulletin of The Seismological Society ofAmerica,1934,24(5):1-32.
    [3]JACOBSEN L S.Impulsive hydrodynamic of fluid inside a cylindrical tank and of a fluid surrounding a cylindrical pier[J].Bulletin of TheSeismological Society of America,1949,39(1):189-204.
    [4]HOUSNER G W.Dynamic pressures on accelerated fluid containers[J].Bulletin of The Seismological Society of America,1957,47(1):15-35.
    [5]VELETSOS A S.Seismic effects in flexible liquid storage tanks[C]//The International Association for Earthquake Engineering.Rome,Italy:Fifth World Conference,1974:630-639.
    [6]VELETSOS A S,YANG J Y.Earthquake response of liquid storage tank[C]//Advances in Civil Engineering Mechanics.Raleigh,N.C.:Proceedings of the Annual EMD Specialty Conference,1977:1-24.
    [7]HAROUN M A.Dynamic analysis of liquid storage tanks[R].EERL,80-04,Pasadena,California:California Institute of Technology,1980.
    [8]HAROUN M A.Vibration studies and tests of liquid storage tanks[J].Earthquake Engineering and Structure Dynamics,1983,11(2):179-206.
    [9]PENZIEN J,SCHEFFEY C F,PARMELEE R A.Seismic analysis of bridges on long piles[J].ASCE,1964,90(EM3):223-254.
    [10]孙利民,张晨南,潘龙,等.桥梁桩土相互作用的集中质量模型及参数确定[J].同济大学学报,2002,30(4):409-415.
    [11]陈国兴,胡庆兴,韦晓,等.桩与土和结构相互作用对高层建筑基底输入地震动的影响[J].地震工程与工程振动,2000,3(1):245-252.
    [12]林杨.大型LNG储罐桩-土-结构-隔震体系地震响应分析[D].硕士论文.天津:天津大学,2011.
    [13]居荣初,曾心传.弹性结构与液体的耦联振动理论[M].北京:地震出版社,1983:123-125.
    [14]邹立华,方雷庆.考虑桩-土-结构相互作用的振动控制研究[J].振动与冲击,2010,29(11):100-104.
    [15]GB50011-2010.建筑抗震设计规范[S].北京:中国建筑工业出版社,2010.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心