上海中心大厦结构抗震分析简化模型及地震耗能分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
以结构高度为632 m的上海中心大厦结构为工程背景,建立其二维非线性简化分析模型,提出主要构件的简化分析方法,并与上海中心大厦结构精细有限元分析模型的模态、静力和弹塑性时程分析结果进行比较,对简化分析模型的准确性进行验证。结果表明:建立的简化分析模型能较好地反映上海中心大厦的基本动力特性,近似反映结构的地震响应。以FEMA P695推荐的22组远场地震动记录为基本输入,基于简化模型的弹塑性时程分析结果,分析不同地震强度下上海中心大厦结构不同构件对塑性滞回耗能的贡献及其总耗能沿高度的分布。分析表明:由于高阶振型影响显著,上海中心大厦结构的总塑性耗能主要集中在结构上部的4个区段,且伸臂桁架是主要的塑性耗能构件。本研究可为进一步完善超高层建筑结构抗震设计理论提供参考。
Based on the Shanghai Tower project,an actual super-tall building with a height of 632 m,the simplified modeling methods for the main components were discussed in detail and then the simplified 2-D nonlinear model was developed.The accuracy of the simplified model was validated by comparing the model,static and time-history analysis results of the refined finite element model.The validation indicates that the simplified model can represent the basic dynamic characteristics of the building and predicts the elastic and nonlinear seismic responses well.Taking the 22 pairs of ground motions suggested by FEMA P695 as the basic seismic input,the energy-dissipation contribution of different components and the distribution of the total energy-dissipation over the height under different seismic intensities were determined with the proposed simplified model.The results indicate that due to the significant contributions of high-order vibration modes,the total hysteretic energy distribution is mainly concentrated in the upper four zones of the building and that the outrigger is the major energy dissipation component.It will provide useful information for further development of optimum design for super-tall buildings.
引文
[1]邹昀,吕西林,钱江.上海环球金融中心大厦结构抗震性能研究[J].建筑结构学报,2006,27(6):74-80,107.(ZOU Yun,LU Xilin,QIAN Jiang.Studyon seismic behavior of Shanghai World Financial CenterTower[J].Journal of Building Structures,2006,27(6):74-80,107.(in Chinese))
    [2]Fan H,Li Q S,Tuan Alex Y,Xu L H.Seismicanalysis of the World’s Tallest Building[J].Journal ofConstructional Steel Research,2009,65(5):1206-1215.
    [3]Lu Xiao,Lu XinZheng,Zhang WanKai,Ye LiePing.Collapse simulation of a super high-rise buildingsubjected to extremely strong earthquakes[J].ScienceChina Technological Sciences,2011,54(10):2549-2560.
    [4]蒋欢军,和留生,吕西林,丁洁民,赵昕.上海中心大厦抗震性能分析和振动台试验研究[J].建筑结构学报,2011,32(11):55-63.(JIANG Huanjun,HE Liusheng,LU Xilin,DING Jiemin,ZHAO Xin.Analysis of seismic performance and shaking table testsof the Shanghai Tower[J].Journal of BuildingStructures,2011,32(11):55-63.(in Chinese))
    [5]GB50011—2010建筑抗震设计规范[S].北京:中国建筑工业出版社,2010.(GB50011—2010Codefor seismic design of buildings[S].Beijing:ChinaArchitecture&Building Press,2010.(in Chinese))
    [6]Poon D,Hsiao L,Zhu Y,Joseph L,Zuo S,Fu G,Ihtiyar O.Non-linear time history analysis for theperformance based design of Shanghai Tower[C]//Structures Congress:Las Vegas.Reston,Virginia:ASCE,2011:541-551.
    [7]Connor J J,Pouangare C C.Simple-model for design offramed-tube structures[J].Journal of StructuralEngineering,ASCE,1991,117(12):3623-3644.
    [8]Luco J E,De Barros F C.Control of the seismicresponse of a composite tall building modelled bytwo interconnected shear beams[J].EarthquakeEngineering and Structural Dynamics,1998,27(3):205-223.
    [9]Hoenderkamp J C D.Simplified analysis of asymmetrichigh-rise structures with cores[J].Structural Design ofTall Buildings,2002,11(2):93-107.
    [10]包世华,龚耀清.超高层建筑空间巨型框架的简化振动计算[J].建筑结构,2003,33(7):54-56.(Bao Shihua,Gong Yaoqing.Simplified dynamicalcomputational model for space mega-frame[J].Building Structure,2003,33(7):54-56.(inChinese))
    [11]Meftah S A,Tounsi A,El Abbas A B.A simplifiedapproach for seismic calculation of a tall building bracedby shear walls and thin-walled open section structures[J].Engineering Structures,2007,29(10):2576-2585.
    [12]JGJ3—2010高层建筑混凝土结构技术规程[S].北京:中国建筑工业出版社,2010.(JGJ3—2010Technical specification for concrete structures of tallbuilding[S].Beijing:China Architecture&BuildingPress,2010.(in Chinese))
    [13]PEER/ATC-72-1 Modelling and acceptance criteriafor seismic design and analysis of tall buildings[S].Redwood City,CA:Applied Technology Council,2010.
    [14]Ibarra L F,Medina R A,Krawinkler H.Hystereticmodels that incorporate strength and stiffnessdeterioration[J].Earthquake Engineering andStructural Dynamics,2005,34(12):1489-1511.
    [15]Ibarra L F,Krawinkler H.Global collapse of framestructures under seismic excitations[R].Stanford,Califormia:The John A.Blume EarthquakeEngineering Research Center,Department of CivilEngineering,Stanford University,2005.
    [16]Setzler E J,Sezen H.Model for the lateral behavior ofreinforced concrete columns including sheardeformations[J].Earthquake Spectra,2008,24(2):493-511.
    [17]Sezen H,Chowdhury T.Hysteretic model for reinforcedconcrete columns including the effect of shear and axialload failure[J].Journal of Structural Engineering,ASCE,2009,135(2):139-146.
    [18]Orakcal K,Wallace J W.Flexural modelling ofreinforced concrete walls:experimental verification[J].ACI Structural Journal,2006,103(2):196-206.
    [19]陆新征,叶列平,缪志伟.建筑抗震弹塑性分析[M].北京:中国建筑工业出版社,2009:21-26.(Lu Xinzheng,Ye Lieping,Miao Zhiwei.Elasto-plastic analysis of buildings against earthquake[M].Beijing:China Architecture&Building Press,2009:21-26.(in Chinese))
    [20]陈小刚,牟在根,张举兵,王翠坤,陈才华,孙慧中.型钢混凝土柱抗震性能实验研究[J].北京科技大学学报,2009,31(12):1516-1524.(ChenXiaogang,Mu Zaigen,Zhang Jubing,Wang Cuikun,Chen Caihua,Sun Huizhong.Experimental study onthe seismic behavior of steel reinforced concretecolumns[J].Journal of Beijing University of Scienceand Technology,2009,31(12):1516-1524.(inChinese))
    [21]Lam W Y,Su R K L,Pam H J.Experimental study onembedded steel plate composite coupling beams[J].Journal of Structural Engineering,ASCE,2005,131(8):1294-1302.
    [22]贾鹏,杜修力,赵均.不同轴压比钢筋混凝土核心筒抗震性能[J].北京工业大学学报,2009,35(1):63-69.(Jia Peng,Du Xiuli,Zhao Jun.Seismicbehavior of reinforced concrete core wall under differentaxial load ratio[J].Journal of Beijing University ofTechnology,2009,35(1):63-69.(in Chinese))
    [23]FEMA P695 Quantification of building seismicperformance factors[S].Redwood City,CA:AppliedTechnology Council,2009.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心