地震过程剪应力监测压电智能骨料
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
提出用于监测地震过程中混凝土结构剪应力的压电智能骨料(Smart Aggregate,简称SA),该压电智能骨料采用d15型PZT作为敏感元件。为研究该压电智能骨料对剪应力的响应,对压电智能骨料的两侧面反对称施加剪力,并建立该压电智能骨料的有限元模型,研究剪应力在其中的传递规律,从理论上得出该压电智能骨料的灵敏度系数;设计施加剪应力的模具,通过电液伺服试验机对该压电智能骨料施加动态荷载,荷载频率为地震作用下通常出现的结构响应频率,荷载幅值大于普通混凝土结构的抗剪强度。试验表明,在混凝土抗剪强度范围内,该压电智能骨料对剪应力的灵敏度保持恒定,试验结果与理论结果吻合较好,表明文中建立的有限元模型是可靠的。综上,该文提出的压电智能骨料可以用于地震损伤全过程剪应力监测
A kind of smart aggregate for seismic shear stress monitoring in concrete structures is proposed. The SA uses d15-mode PZT as the sensing element. A calibration test is designed in which cyclic shear stress with a dominant frequency of the earthquake response spectrum is applied on the two opposite sides of the proposed SA using a specially designed loading mold. The maximum applied stress is larger than the shear strength of ordinary concrete to allow for measurement during failure. The Finite Element( FE) model is established for researching the distribution of stress in the SA,and we calculate the sensitivity of the SA in theory. The calibrated sensitivity value and the calculated valve are approximately the same,indicating that the established FE model is reliable,the sensitivity of SA is also very stable in test result. In conclusion,the proposed SA can be used in monitoring the overall shear stress development process in concrete during a seismic event.
引文
[1]Mitra N,Mitra S,Lowes L N.Probabilistic model for failure initiation of reinforced concrete interior beamcolumn connections subjected to seismic loading[J].Engineering Structures,2011,33(1):154-162
    [2]Shiohara H.New model for shear failure of RC interior beam-column connections[J].Journal of Structural Engineering,2001,127(2):152-160
    [3]Elwood K J,Moehle J P.Dynamic collapse analysis for a reinforced concrete frame sustaining shear and axial failures[J].Earthquake Engineering&Structural Dynamics,2008,37(7):991-1012
    [4]Yavari S,Elwood K J,Wu C L.Collapse of a nonductile concrete frame:Evaluation of analytical models[J].Earthquake Engineering&Structural Dynamics,2009,38(2):225-241
    [5]Zhu L,Elwood K J,Haukaas T.Classification and seismic safety evaluation of existing reinforced concrete columns[J].Journal of Structural Engineering,2007,133(9):1316-1330
    [6]Elwood K J,Moehle J P.Shake table tests and analytical studies on the gravity load collapse of reinforced concrete frames[R].PEER,2003
    [7]Mwafy A,Elnashai A.Importance of shear assessment of concrete structures detailed to different capacity design requirements[J].Engineering Structures,2008,30(6):1590-1604
    [8]Wu C L,Kuo W W,Yang Y S,et al.Collapse of a nonductile concrete frame:Shaking table tests[J].Earthquake Engineering&Structural Dynamics,2009,38(2):205-224
    [9]Yavari S,Elwood K J,Lin S,et al.Experimental study on dynamic behavior of multi-story reinforced concrete frames with non-seismic detailing[R].San Francisco,California:ASCE,2009:364,45.
    [10]Delgado R,Delgado P,Vila Pouca N,et al.Shear effects on hollow section piers under seismic actions:Experimental and numerical analysis[J].Bulletin of Earthquake Engineering,2009,7(2):377-389
    [11]Hegger J,Sherif A,Gortz S.Investigation of pre-and postcracking shear behavior of prestressed concrete beams using innovative measuring techniques[J].ACI Structural Journal,2004,101(2):183-192
    [12]Feng J,Fu G,Belarbi D J.Measurement of concrete internal strain using a three-dimensional transducer system[J].Experimental Mechanics,2005,45(5):467-475
    [13]Han B G,Han B Z,Ou J P.Experimental study on use of nickel powder-filled Portland cement-based composite for fabrication of piezoresistive sensors with high sensitivity[J].Sensors and Actuators,A:Physical,2009,149(1):51-55
    [14]Han B,Ou J.Embedded piezoresistive cement-based stress/strain sensor[J].Sensors and Actuators,A:Physical,2007,138(2):294-298
    [15]Xiao H,Li H,Ou J.Modeling of piezoresistivity of carbon black filled cement-based composites under multi-axial strain[J].Sensors and Actuators,A:Physical,2010,160(1/2):87-93
    [16]Xiao H,Li H,Ou J.Strain sensing properties of cementbased sensors embedded at various stress zones in a bending concrete beam[J].Sensors and Actuators,A:Physical,2011,167(2):581-587
    [17]Song G,Gu H,Mo Y L,et al.Health monitoring of a concrete structure using piezoceramic materials[C]//SPIE,2005
    [18]Gu H,Song G,Dhonde H,et al.Concrete early-age strength monitoring using embedded piezoelectric transducers[J].Smart Materials and Structures,2006,15(6):1837-1845
    [19]Song G,Olmi C,Gu H.An overheight vehicle-bridge collision monitoring system using piezoelectric transducers[J].Smart Materials and Structures,2007,16(2):462-468
    [20]Yan S,Sun W,Song G,et al.Health monitoring of reinforced concrete shear walls using smart aggregates[J].Smart Materials and Structures,2009,18(4):47001.
    [21]Gu H,Moslehy Y,Sanders D,et al.Multi-functional smart aggregate-based structural health monitoring of circular reinforced concrete columns subjected to seismic excitations[J].Smart Materials and Structures,2010,19(6):65026
    [22]Laskar A,Gu H,Mo Y L,et al.Progressive collapse of a two-story reinforced concrete frame with embedded smart aggregates[J].Smart Materials and Structures,2009,18(7):75001.
    [23]Moslehy Y,Gu H,Belarbi A,et al.Smart aggregate based damage detection of circular RC columns under cyclic combined loading[J].Smart Materials and Structures.2010,19(6):65021.
    [24]Yang X,Li Z,Ding Y,et al.Test on sensor effect of cement matrix piezoelectric composite[J].Transactions of Tianjin University,2005,11(2):133-136
    [25]Li Z,Yang X,Li Z.Application of cement-based piezoelectric sensors for monitoring traffic flows[J].Journal of Transportation Engineering,2006,132(7):565-573
    [26]Hou S,Zhang H B,Ou J P.A PZT-based smart aggregate for compressive seismic stress monitoring[J].Smart Materials and Structures,2012,21(10):105035
    [27]IEEE Standard on piezoelectricity[S].1988
    [28]ACI 318—2008 Building code requirements for structural concrete and commentary[S].Farmington Hills:ACI Committee,2008

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心