隧道不同减震层的地震动力响应与减震效果分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
隧道设置减震层是一种有效的减小衬砌动力响应的方法,但由于受到设置模式、设计参数及施工条件等诸多因素的制约,其应用较少。针对不同的隧道减震层设置模式,采用计算机地震动力仿真模拟方法,探讨其减震机理与效果。在此基础上,提出一种新型的减震层设置模式,即"围岩-初期支护-减震层-二次衬砌"模式,就其减震效果、材料选择、厚度设计及其适用范围等进行深入研究。研究结果表明:该减震层设置模式能够明显地减小隧道二次衬砌的地震动力响应,尤其是选择10~20 cm的软质橡胶作为减震层时,二次衬砌的动应力峰值减小非常明显,达50%~80%,且受力状态也得到很好的改善,从而减小或避免了隧道二次衬砌受到严重震害。与常规的"围岩-减震层-初期支护-二次衬砌"模式相比,施工便捷,成本较低,更适宜于中国隧道工程建设所采用的新奥法施工。
Buffer layer on tunnels is an effective method to reduce the dynamic response of lining structure.However,effects of the buffer layer is controlled by some factors,such as setting mode,design parameters and construction conditions.So it is seldom used.Aiming at investigating different setting modes of the buffer layer on tunnels,the paper explores the damping mechanism and effect of earthquake dynamics with computer simulations.On the basis of computing and analyzing,a new setting mode of the buffer layer,namely 'rock-primary support-buffer layer-the second lining' mode,is put forward.The deeper study on its damping effect,material selection,and thickness design and application scope are carried out by using the three-dimensional dynamics finite difference technique.Results show that the new buffer layer mode can significantly reduce the seismic dynamic response of the second lining of tunnels,especially when the thickness of the buffer layer of soft latex is 10~20cm.The peak of dynamic stress of the second lining reduces up to 50%~80%.And the stress state is also efficiently improved,which reduces or avoids severe earthquake damages to the second lining of tunnels.Compared with the conventional 'rock-buffer layer-primary support-second lining' mode,the new mode is more suitable for NATM used in tunnel construction projects in China and its construction is convenient and its cost is lower.
引文
[1]王明年.高烈度地震区地下结构减震技术原理的研究[D].成都:西南交通大学,1999
    [2]傅世煜.常用建筑材料手册[M].北京:中国标准出版社,2008
    [3]李勇武.化工产品手册[M].第五版.北京:化学工业出版社,2008
    [4]刘波.FLAC原理、实例与应用指南[M].北京:人民交通出版社,2005
    [5]Itasca Consulting Group Inc.FLAC3D(Fast LagrangeAnalysis of Continua in 3 Dimensions)Users Manual[M].USA:Itasca Consulting Group Inc,2005
    [6]Liu Chunling,Qi Shengwen.Stability analysis of slopeunder earthquake with FLAC3D[J].Chinese Journal ofRock Mechanics and Engineering,2004,23(16):2730-2733
    [7]王明年,崔光耀.高烈度地震区隧道减震模型的建立及其减震效果模型试验研究[J].岩土力学,2010,31(6):1884-1890(Wang Mingnian,Cui Guangyao.Establishment of tunnel damping model and research ondamping effect with model test in highly seismic area[J].Rock and Soil Mechanics,2010,31(6):1884-1890(inChinese))
    [8]方林,宋林俐.穿越断层破碎带隧道减震措施研究[J].公路,2010,2(2):194-197(Fang Lin,Song Linli.Research on vibration-absorption measures of tunnelsthrough fault[J].Highway,2010,2(2):194-197(inChinese))
    [9]黄娟,彭立敏,李兴龙.可液化地层狮子洋盾构隧道横向地震响应规律及减震措施研究[J].岩土工程学报,2009,31(10):1540-1546(Huang Juan,Peng Limin,LiXinglong.Transverse seismic responses of Shiziyang shieldtunnel in soil and its shock absorption measures[J].Chinese Journal of Geotechnical Engineering,2009,31(10):1540-1546(in Chinese))
    [10]李育枢.山岭隧道地震动力响应及减震措施研究[D].上海:同济大学,2006(Li Yushu.Study on earthquakeresponses and vibration-absorption measures for mountaintunnel[D].Shanghai:Tongji University,2006(inChinese))
    [11]徐华.高烈度区山岭隧道地震动力响应及抗震稳定性研究[D].成都:成都理工大学,2009(Xu Hua.Research on seismic dynamic response and aseismicstability of mountain tunnel in high-intensity zone[D].Chengdu:Chengdu University of Technology,2009(inChinese))
    [12]李天斌.汶川特大地震中山岭隧道变形破坏特征及影响因素分析[J].工程地质学报,2008,16(6):742-750(Li Tianbin.Failure characteristics and influence factoranalysis of mountain tunnels at epicenter zones of greatwenchuan earthquake[J].Journal of Engineering Geology,2008,16(6):742-750(in Chinese))
    [13]钱七虎,何川,晏启祥.隧道工程动力响应特性与汶川地震隧道震害分析及启示[C]//汶川大地震工程震害调查分析与研究,2009:608-618

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心