罕遇地震下双层球面网壳的弹塑性动力响应分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
对54个双层球面网壳模型在罕遇地震下的弹塑性响应进行了计算。网壳模型中杆件截面按非地震工况下的满应力设计确定,并满足小震作用下的结构验算。计算时考虑网壳和下部结构的协同工作。杆单元采用能够同时考虑受拉屈服和受压屈曲的等效弹塑性滞回模型。根据计算结果,考察了网壳跨度、矢跨比、支座连接条件、下部结构形式以及地震波选取对结构塑性区域、塑性发展程度以及残余变形的影响。研究表明,罕遇地震下双层球面网壳的薄弱区域不全出现在临支座区域。当网壳受下部结构约束较强或跨度和矢跨比均较大时,发生残余塑性应变的杆件大多出现在网壳中间圈层区域。跨度、矢跨比和支座条件是影响塑性杆件分布和塑性应变大小的三个敏感因素。但所有模型并没有在罕遇地震下出现倒塌。
The elasto-plastic responses of 54 double-layer spherical reticulated shell models were calculated.The cross-sectional size of members in those reticulated shell models was determined with the structural full-stress design under non-seismic load cases,and also satisfied the structural check under frequently occurred earthquake.The interaction between reticulated shells and their substructure was considered in numerical computation.An equivalent elasto-plastic hysteretic model was adopted to simultaneously deal with both tensile yielding and compressive buckling of bar element.The results of numerical computation showed that the effects of span of shell,rise-span ratio,connection condition of abutment,layout of substructure and choice of ground motion on structural plastic region,magnitude of plastic strain and residual deformation are analyzed;the weak regions of double-layer spherical reticulated shells under rare earthquake are not quite near the abutments;for those reticulated shells strongly constrained by substructure or with longer span and higher rise-span ratio,the members with residual plastic strain are mainly located in the inner annular region near the center of shells;span of shell,rise-span ratio and connection condition of abutment are three main sensitive parameters to the distribution of plastic members and the magnitudes of their plastic strains;however,no collapse occurs for all models under rare earthquake.
引文
[1]董石麟,罗尧治,赵阳.新型空间结构分析、设计与施工[M].北京:人民交通出版社,2006.
    [2]何放龙,马自克.强震作用下双层球面网壳结构非线性动力响应分析[J].湖南大学学报(自然科学版),2007,34(10):1-5.HE Fang-long,MA Zi-ke.Nonlinear analysis of double-layer reticulated spherical dome under strong earthquake motions[J].Journal of Hunan University(Natural Sciences),2007,34(10):1-5.
    [3]徐光辉.网壳屋盖与下部支承结构组合体系静、动力性能研究[D].南京:东南大学,2005.
    [4]吴秀丽,吴长,金恩平,等.新型双层球面网壳体系减震性能参数研究[J].兰州理工大学学报,2009,35(4):111-116.WU Xiu-li,WU Chang,JIN En-pin,et al.Parametric analysis of vibration reduction performance of new double-layer reticulated spherical shell system[J].Journal of Lanzhou University of Technology,2009,35(4):111-116.
    [5]中华人民共和国国家标准.建筑抗震设计规范(GB50011-2010)[S].北京:中国建筑工业出版社,2010.
    [6]陆新征,叶列平,缪志伟.建筑抗震弹塑性分析[M].北京:中国建筑工业出版社,2009.
    [7]谢道清.罕遇地震下考虑压杆屈曲的网壳弹塑性分析[D].杭州:浙江大学,2008.
    [8]谢道清,沈金,邓华,等.考虑受压屈曲的圆钢管杆单元等效弹塑性滞回模型[J].振动与冲击,2012,31(6):160-165.XIE Dao-qing,SHEN Jin,DENG Hua,et al.The equivalent elasto-plastic hysteretic model of steel circular-tube bar elements considering compressive buckling[J].Journal of Vibration and Shock,2012,31(6):160-165..
    [9]张成,吴慧,高博青.网架结构在地震下的失效模式及其数值表达[J].振动与冲击,2011,30(8):45-50.ZHANG Cheng,WU Hui,GAO Bo-qing.Failure modes and their numerical descriptions of grid structures subjected to earthquake[J].Journal of Vibration and Shock,2011,30(8):45-50.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心