地铁地下车站在非一致性地震输入下的动力响应
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
由于近年来城市地下空间的开发,修建了一大批地铁车站,这些大尺度地下结构的出现,为工程抗震提出了新的课题。首先详细阐述了基于设计反应谱合成空间相关多点地震波的方法,合成的地震波不仅具有地震动的空间相关性,同时还具有强度和频率含量的双重非平稳性;再分别建立了位于三种场地中的地铁车站三维有限元模型,用无限单元来模拟无限域的影响,在此基础上分析了一致与非一致地震动输入情况下该地铁车站的地震响应特征。结果表明:在软土场地中,地震动的非一致性使车站轴向各中柱位移产生了较大的相位差,同时对侧墙的动应力影响较大;在中等和硬土场地中,地震动的非一致性对结构的动力响应影响较小,一般可以忽略。建议在对软土场地中的大尺度车站结构进行地震反应分析时,应考虑地震动的非一致性影响。
Because of exploitation of urban underground space recently,a lot of large-scale subway stations were built.So,a new issue appeared for engineering design.The procedures for artificial simulation of multi-point seismic waves based on the code response spectrum were presented here.The generated seismic waves were spatially correlated to the ground motion,and had the double non-stationary properties of strength and frequency.The three-dimensional numerical models of a subway station were established under three different site conditions,and the infinite domain of soil was simulated with an infinite element.On this basis,the seismic responses of the subway station under non-uniform ground motion were analyzed compared with those under uniform seismic excitation.The results showed that horizontally relative displacements between top and bottom at different axial sections of the subway station have a great phase difference in soft sites because of non-uniform seismic action,and the effect on the dynamic stress of the side wall is great;the influence of the non-uniform feature on the dynamic response of the station is insignificant in medium hard sites and hard sites;a suggestion is given that the spatially multi-support earthquake excitations must be considered in the seismic analysis of a large-scale subway station in soft sites.
引文
[1]Lin J H,Zhang Y H,Li Q S,et al.Seismic spatial effects for long - span bridges,using the pseudo excitation method[J]. Engineering Structures,2004,26(9):1207 -1216.
    [2]范立础,王君杰,陈玮.非一致地震激励下大跨度斜拉桥的响应特征[J].计算力学学报,2001,18(3):358 -363.
    [3]杨庆山,刘文华,田玉基.国家体育场在多点激励作用下的地震反应分析[J].土木工程学报,2008,41(2):35-41.
    [4]陈健云,林皋.多点输入随机地震动拱坝K地基体系反应分析[J].世界地震工程,2000,16(3):39-43.
    [5]Hashash Y M A,Hook J J,Schmidt B,et al.Seismic design and analysis of underground structures[J].Tunnelling and Underground Space Technology,2001,(16):247 -293.
    [6]刘金云,陈健云,胡志强.输水隧道在行波激励下的三维地震反应分析[J].防灾减灾工程学报,2007,27(1):11 -16.
    [7]李海波,朱莅,吕涛,等.考虑地震动空间非一致性的岩体地下洞室群地震反应分析[J].岩石力学与工程学报,2008,27(9):1758-1766.
    [8]潘旦光,楼梦麟,范立础.多点输入下大跨度结构地震反应分析研究现状[J].同济大学学报,2001,29(10):1213 -1219.
    [9]屈铁军,王前信.空间相关多点地震动合成(Ⅰ)基本公式[J].地震工程与工程振动,1998,18(1):8-15.
    [10]屈铁军,王前信.空间相关多点地震动合成(Ⅱ)合成实例[J].地震工程与工程振动,1998,18(2):25-32.
    [11]刘志明,杜成斌,孙立国.空间相关非平稳地震动反应谱拟合[J].河海大学学报(自然科学版),2009,37(6):675 -679.
    [12]Kaul M K.Stochastic characterization of earthquake through theirs spectrum[J].Earthquake Engineering and Structural Dynamics,1978,6(5):497 -509.
    [13]屈铁军,王君杰,王前信.空间变化的地震动功率谱的实用模型[J].地震学报,1996,18(1):55-62.
    [14]中华人民共和国电力行业标准.(DL5073-2000)水工建筑物抗震设计规范[S].北京:中国电力出版社,2001.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心