地震强度对堆石坝变形的影响
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
采用基于状态相关的剪胀理论的临界状态砂土模型,以SUMDES2D为有限元平台,对直接建造在基岩上的心墙堆石坝进行了1组抗震性能计算,分析了坝体在不同的地震强度下的动力响应,以研究地震强度对土石坝变形机理的影响。计算结果表明,地震强度越大,地震所引发永久变形和局部变形就越大;文中除了给出土石坝的总体位移及变形状况外,还提供了堆石坝在某些局部位置的应力路径和应力应变关系,探讨了不同地震强度下坝体破坏的内在机理。局部土单元的动力响应,揭示位于坝体上游坝坡马道附近单元由于密实度小,在应力不大的情况下就达到材料的临界状态,随着地震强度的增加,该部位由稳定逐步过渡到"临界状态",而后沿着临界状态线发展,土单元由稳定逐步过渡到"流动变形"。
The anti-seismic performance of a rock-fill dam is not only determined by its geometry and composition,but also by the intensity of an earthquake to which the dam is subjected.Through critical state sand model cooperating with the concept of state-dependent dilatancy,a group of fully coupled finite element analyses of the response of a central core rock-fill Dam are presented for the study of the seismic performance.The numerical analysis is on the SUMDES2D platform.The dam was built directly on bedrock to earthquakes of different intensities.The dynamic response of the dam under earthquake intensity was analyzed.The calculation results show that,the bigger the earthquake intensity is,the larger the permanent deformation and local deformation would occur in the dam.The analysis provides not only the overall displacement and deformation of the dam,but also the stress path and stress-strain relationship of local soil unit.The inner destructive mechanism of the dam under different seismic intensities is also further discussed.The dynamic response of local soil unit illustrates whether the critical state of the dam is reached based on the site of the unit and its stress state.The soil units near the berm of upstream slope gradually achieve their critical state of the material as the earthquake intensity increases,and have a "flow deformation."
引文
[1]唐洪祥,邵龙潭.地震动力作用下有限元土石坝边坡稳定性分析[J].岩石力学与工程学报,2004,23(8):1318~1324.Tang Hongxiang,Shao Longtan.Finite element analysis on slopestability of earth-rock dam under earthquake.Chinese Journal ofRock Mechanics and Engineering,2004,23(8):1318~1324.
    [2]张建民,罗刚.考虑可逆与不可逆剪胀的粗粒土东本构模型[J].岩土工程学报,2005,27(2):178~184.Zhang Jianmin,Luo Gang.A new cyclic constitutive model forgranular soil considering reversible and irreversible dilatancy.Chi-nese Journal of Geotechnical Engineering,2005,27(2):178~184.
    [3]刘寒鹏,胡高社,史艳娇.人工填土高边坡爆破振动动力响应分析研究[J].工程地质学报,2007,15(2):263~267.Liu Hanpeng,Hu Gaoshe,Shi Yanjiao.Ground vibration character-istics of a high fill slope induced by blasting.Journal ofEngineering Geology,2007,15(2):263~267.
    [4]李志强,张鸿儒,陆传波.挡土结构物随机地震响应分析及动力可靠度研究[J].工程地质学报,2006,14(3):345~350.Li Zhiqiang,Zhang Hongru,Lu Chuanbo.Stochastic analysis ofseismic responses and dynamic reliability of retaining structures.Journal of Engineering Geology,2006,14(3):345~350.
    [5]Li XS,Dafalias YF.Dilatancy for cohesionless soils.Geotechnique,2000,50(4):449~460.
    [6]Li XS and Ming HY.Unified modeling of flow liquefaction and cy-clic mobility.Soil Dynamics and Earthquake Engineering,2000,19(5):363~369.
    [7]Cai Zhengyin.The Deformation Behavior of Sand.Zhengzhou:Yellow River Conservancy Press,2004.
    [8]曹培.蔡正银.砂土应力路径试验的数值模拟[J].岩土工程学报,2008,30(1):133~137.Cao Pei,Cai Zhengyin.Numerical simulation of stress path tests onsand.Chinese Journal of Geotechnical Engineering,2008,30(1):133~137.
    [9]Ming HY and Li XS.Fully coupled analysis of failure and remedi-ation of Lower San Fernando dam.Journal of Geotechnical andGeoenvironmental Engineering,ASCE,2003,129(4):336~349.
    [10]Li XS and Ming HY.Failure and deformation mechanisms oflower and upper San Fernando dams[A].International Workshopon Prediction and Simulation Methods in Geomechanics,Athens(IWS-Athens 2003)[C].336~349.
    [11]邹离湘,明海燕.地震强度对Upper San Fernando土坝流动变形的影响[J].河海大学学报(自然科学版),2003,31(3):285~290.Zou Lixiang,Ming Haiyan.Impact of earthquake intensity on flowdeformation of the Upper San Fernando dam.Journal of Hohai U-niversity(Natural Sciences),2003,31(3):285~290.
    [12]明海燕,李相菘.Lower San Fernando土坝破坏及加固的完全耦合分析[J].岩土工程学报,2002,24(3):294~300.Ming Haiyan,Li Xiangsong.Fully coupled analysis of failure andremediation of Lower San Fernando dam.Chinese Journal ofGeotechnical Engineering,2002,24(3):294~300.
    [13]Li XS and Ming HY.Seepage driving effect on flow deformationof San Fernando dams.Soil Dynamics and Earthquake Engineer-ing,24(12):979~992.
    [14]Ming HY and Li XS.SUMDES2D,A Two-Dimensional Fully-Coupled Geotechnical Earthquake Response Analysis Program[R].Hong Kong:Hong Kong University of Science and Technol-ogy,2001.
    [15]蔡正银,丁树云,毕庆涛.堆石料变形特性及数值模拟[J].岩石力学与工程学报工程学报,2009,28(7):1327~1334.Cai Zhengyin,Ding Shuyun,Bi Qingtao.Numerical simulation ofstrength and deformation characters on rock-fill.Chinese Journalof Rock Mechanics and Engineering,2009,28(7):1327~1334.
    [16]Li XS.A sand model with state-dependent dilatancy[J].Geptechnique,2002,52(3):173~186.
    [17]颜国卿.心墙坝有效应力与总应力算法的对比研究[D].南京:河海大学,2005,25~27.Yan Guoqing.Comparing Study on the Total Stress Method andEfefctive Stress Method of the Core Wall Dams.Nanjing:HohaiUniversity,2005,25~27.
    [18]CSMIP.Strong Motion Instrumentation Program.Division of Mines&Geology,the Department of Conservation,California[EB/OL].http:∥docinet3.consrv.ca.gov/csmip.
    [19]章为民,王芳,付华,等.长河坝水电站砾石土心墙堆石坝筑坝材料静动力与渗流试验报告[R].南京:南京水利科学研究院,2006,3:5~72.Zhang Weimin,Wang Fang,Fu Hua,et al.The Static andDynamic Test Reports of Changhe Central Core Rock-Fill Dam.Nanjing:Nanjing Hydraulic Research Institute,2006,3:5~72.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心