重力式与格构式组合支挡结构位移和应变地震响应的振动台试验研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
重力式挡土墙与格构式框架护坡组合是典型的高边坡支护方式,其地震作用下的动位移和动应变响应特性是颇为关注的问题,为此设计了一个比尺为1∶8的边坡模型,开展大型振动台试验研究。试验结果表明:支挡结构只在水平向地震波作用下产生水平向的动位移响应,X向激振下的动位移负峰值和XZ双向激振下的动位移正峰值较小。当激振加速度AXmax0.6 g时,在X向或XZ双向激振下,动位移正峰值和负峰值基本相同,当AXmax>0.6 g时,X向激振时动位移正峰值大于负峰值,而在XZ双向激振时负峰值大于正峰值。在X向或XZ双向激振下,当AXmax0.6 g时永久位移响应幅度较小,而当AXmax>0.6 g时响应强度急剧增大。XZ双向激振时永久位移量稍大于X向激振且方向相反。重力式挡墙的动位移模式为平移与转动的耦合,且动位移模式的变化与地震动方向、烈度相关;格构式锚杆框架梁的动位移模式为平移。在水平向地震波作用下,重力式挡墙墙顶和框架梁产生较大的正向动应变响应。
The combination of a gravity retaining wall and a lattice framed anchor structure is one of typical high slope supporting methods,and its responses of seismic displacement and seismic strain are problems to that people pay more attention.Here,a slope model with a geometric scale of 1∶ 8 was designed and a large-scale shaking table test for this model was performed to study its dynamic response characteristics.The results showed that the horizontal seismic displacement responses of retaining structures are excited under the horizontal seismic wave acceleration;the response intensity of negative peak seismic displacement under X excitation and positive peak seismic displacement under X and Z excitations are small;under X-or/and XZ-excitation,the response intensity of positive peak seismic displacement are approximately equal to that of negative peak seismic displacement when excitation acceleration ≤0.6g;and when >0.6g,the response intensity of positive peak seismic displacement is greater than that of negative peak seismic displacement under X excitation;and the situation is opposite under XZ excitation;the response intensity of seismic permanent displacement under X-or/and XZ-excitation is small when Axmax≤0.6g,but this response intensity increases rapidly with excitation acceleration when Axmax>0.6g;the permanent displacement under XZ excitation is slightly greater than that under X excitation but in opposite direction;the seismic displacement mode of the gravity retaining wall is a coupling of translation and rotation,and its changing is related to direction and intensity of seismic excitation;the seismic displacement mode of the anchored beam is translation;the top of the gravity retaining wall and the anchored beam mainly have positive strain response under the horizontal seismic excitation.
引文
[1]邹昀,吕西林,朱杰江.基于性能的抗震设计方法在某复杂超高层结构中的应用研究[J].工程力学,2008,25(9):93-99.ZOU Yun,LXi-lin,ZHU Jie-jiang.Application study ofperformance-based aseismic design to complicanted super tallbuilding structure[J].Engineering Mechanics,2008,25(9):93-99.
    [2]朱玉华,黄海荣,胥玉祥.基于性能的抗震设计研究综述[J].结构工程师,2009,25(5):149-153.ZHU Yu-hua,HUANG Hai-rong,XU Yu-xiang.Studies onperformance-based seismic design[J].Structural Engineers,2009,25(5):149-153.
    [3]李志强.重力式挡土墙抗震动力可靠度分析与基于位移法的抗震设计研究[D].北京:北京交通大学,2007.
    [4]EUROPEAN STANDARD1998Eurocode8:Design of structures for earthquake resistance Part5:Foundations,retaining structures and geotechnical aspects[S].
    [5]Wood J H,Elms D G.Seismic design of bridge abutments and retaining wall[R].Road Research Unit Bulletin84,Vol.2,ISSN0549-0030.
    [6]陈学良,陶夏新,陈宪麦,等.重力挡土墙地震反应研究评述[J].自然灾害学报,2006,15(3):139-146.CHEN Xue-liang,TAO Xia-xin,CHEN Xian-mai,et al.Review of study on seismic response of gravity type retaining wall[J].Journal of Natural Disasters,2006,15(3):139-146.
    [7]陈厚群,侯顺载,张力飞,等.拱坝多点输入动力反应的试验研究[J].水利学报,1995(8):12-20.CHEN Hou-qun,HOU Shun-zai,ZHANG Li-fei,et al.Experimental study on multiple excitation technique of arch dams[J].Journal Hydraulic Engineering,1995(8):12-20.
    [8]王兰民,孙军杰,徐舜华,等.爆破模拟地震动条件下黄土场地震陷研究[J].岩石力学与工程学报,2008,27(5):913-921.WANG Lan-min,SUN Jun-jie,XU Shun-hua,et al.Characteristics of seismic subsidence of loess site induced by blasting ground motion[J].Chinese Journal of Rock Mechanics and Engineering,2008,27(5):913-921.
    [9]Kutter B L.Centrifugal modeling of the response of clay embankments to earthquakes[Ph D Dissertation][D].Cambridge University,1982.
    [10]董龙雷,闫桂荣,廖红建.岩土工程中动态离心模型试验技术的应用[J].岩石力学与工程学报,2000,19(6):789-793.DONG Long-lei,YAN Gui-rong,LIAO Hong-jian.The dynamic centrifuge model test in geotechnical engineering[J].Chinese Journal of Rock Mechanics and Engineering,2000,19(6):789-793.
    [11]Lin M L,Wang K L.Seismic slope behavior in a large-scale shaking table model test[J].Engineering Geology,2006,86(2-3):118-133.
    [12]Tinawi R,Leger P,Leclerc M,et al.Seismic safety of gravity dams:from shake table experiments to numerical analyses[J].Journal of Structural Engineering,ASCE,2000,126(4):518-529.
    [13]孔宪京,李永胜,邹德高,等.加筋边坡振动台模型试验研究[J].水力发电学报,2009,28(5):152-157.KONG Xian-jing,LI Yong-sheng,ZOU De-gao,et al.Shaking table model tests on soil slope reinforced with geo-grid[J].Journal of Hydroelectric Engineering,2009,28(5):152-157.
    [14]薛守义.高等土力学[M].北京:中国建材工业出版社,2007:211-245.
    [15]黄浩华.地震模拟振动台的设计与应用技术[M].北京:地震出版社,2008.
    [16]刘小生,王钟宁,汪小刚,等.面板坝大型振动台模型试验与动力分析[M].北京:中国水利水电出版社,2005.
    [17]Iai S.Similitude for shaking table tests on soil-structure-fluid model in1-g gravitational field[J].Soils and Foundations,1989,29(1):105-118.
    [18]GB5001-2001.建筑抗震设计规范[S].
    [19]GB50111-2006.铁路工程抗震设计规范[S].
    [20]何敏娟,梁峰,马人乐.大型超高钢结构电视塔模拟地震振动台试验研究[J].振动与冲击,2010,29(1):77-80.HE Min-juan,LIANG Feng,MA Ren-le.Shaking table test for a super high steel TV tower[J].Journal of Vibration and Shock,2010,29(1):77-80.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心