随机地震荷载作用下黄土的液化特性
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
以场地未来50 a超越概率10%的地震波作为输入激振波,对取自宁夏南部西吉县夏家大路喜家湾滑坡后壁的黄土开展动三轴试验,研究随机地震荷载作用下黄土中孔隙水压力的增长基本特性、影响效应及孔隙水压力增长规律。由试验结果可知,在随机地震荷载作用下,孔隙水压力对输入动荷载的响应具有明显的滞后性,其增长主要集中在地震荷载的有效持时范围内。输入地震荷载的幅值、有效持时以及固结压力对黄土的液化特性有较大的影响,幅值较大、持时较长、固结压力较小时,更有利于孔隙水压力的发展。由于孔隙水压力的增长是源于孔隙的压缩引起的,因此,可以将孔隙水压力比表示为残余应变的函数,据此,可得地震荷载作用下,黄土不同变形情况时孔隙水压力的发展水平及液化程度。
Certain earthquake waves with 10% exceeding probability in the following 50 years of the field are input as vibration wave to carry out the dynamic triaxial test to research the increasing characteristic,model and effect of pore water pressure of loess samples,which are adopted from the back of a loess landslide in village of Xiajiadalu Xijiawan,Xiji County of Ningxia Province.The results show that the response of pore water pressure in loess delays the vibration wave obviously,and increase in the range of effective time of vibration wave mainly.In addition,the amplitude,effective time of the seismic load and consolidation pressure influence the liquefaction character of loess significantly.The loess samples which suffer a seismic dynamic load with larger amplitude,longer effective time and lower consolidation pressure would induce increase of pore water pressure easily.In addition,for the increase of pore water pressure is induced by the reduction of pore,so the pore water pressure ratio could be expressed by a function of residual strain;and the level of pore water pressure and liquefaction degree of loess under different deformations could be gained under earthquake load.
引文
[1]PRAKASH S,PURI V K.Liquefaction of loessial soils[C]//Proceedings of 3rd International Earthquake Microzonation Conference.[S.l.]:[s.n.],1982:1 101–1 107.
    [2]PURI V K.Liquefaction behavior and dynamic properties of loessial(silty)soils[Ph.D.Thesisi][D].Rolla,USA:University of Missouri-Rolla,1984.
    [3]SHANNON S.Liquefaction and settlement characteristics of siltsoils[Ph.D.Thesisi][D].Rolla,USA:University of Missouri-Rolla,1989.
    [4]PRAKASH S,SANDOVAL J A.Liquefaction of low plasticity silts[J].Soil Dynamic and Earthquake Engineering,1992,11(7):373–397.
    [5]GUO T.PRAKASH S.Liquefaction of silts and silt-clay mixtures[J].Journal of Geotechnical Engineering,1999,l25(8):706–710.
    [6]何开明,王兰民,王峻,等.黄土液化与砂土液化的差异浅析[J].地震研究,2001,24(2):146–149.(HE Kaiming,WANG Lanmin,WANG Jun,et al.Initial analysis of the difference between sandliquefaction and loess liquefaction[J].Journal of Seismological Research,2001,24(2):146–149.(in Chinese))
    [7]佘跃心,刘汉龙,高玉峰.饱和黄土孔压增长模式与液化机制的试验研究[J].岩土力学,2002,23(4):395–399.(SHE Yaoxin,LIUHanlong,GAO Yufeng.Study on liquefaction mechanism and pore-water pressure mode of saturated loess[J].Rock and Soil Mechanics,2002,23(4):395–399.(in Chinese))
    [8]袁中夏,王兰民,YASUD S.黄土液化机制和判别标准的再研究[J].地震工程与工程振动,2004,24(4):164–169.(YUAN Zhongxia,WANG Lanmin,YASUD S.Further study on mechanism anddiscrimination criterion of loess liquefaction[J].Earthquake Engineeringand Engineering Vibration,2004,24(4):164–169.(in Chinese))
    [9]李兰,王兰民,石玉成.黏粒含量对甘肃黄土抗液化性能的影响[J].世界地震工程,2007,23(4):102–106.(LI Lan,WANGLanmin,SHI Yucheng.Effect of clay on liquefaction of loess inGansu[J].World Earthquake Engineering,2007,23(4):102–106.(inChinese))
    [10]刘红玫,王兰民.饱和黄土液化的孔隙微结构特征[J].西北地震学报,2002,24(2):135–139.(LIU Hongmei,WANG Lanmin.Studyon the liquefaction mechanism and pore microstructure of saturatedloess[J].Northwestern Seismological Journal,2002,24(2):135–139.(in Chinese))
    [11]中国建筑科学研究院地基基础研究所.固原黄土动力特性试验报告[R].北京:中国建筑科学研究院地基基础研究所,1983.(Instituteof Ground and Foundation,China Academy of Building Research.Thetest report about dynamic characteristic of loess in Guyuan City[R].Beijing:Institute of Ground and Foundation,China Academy ofBuilding Research,1983.(in Chinese))
    [12]刘汉龙,佘跃心,王兰民.强夯黄土地基液化试验研究[C]//土动力学与岩土地震工程会议论文集.[S.l.]:[s.n.],2002:218–224.(LIUHanlong,SHE Yaoxin,WANG Lanmin.Study on the liquefaction ofthe most tamped ground[C]//Proceedings of Soil Dynamic Mechanicsand Geotechnical Seismic Engineering.[S.l.]:[s.n.],2002:218–224.(in Chinese))
    [13]WANG G H,SASSA K.Pore-pressure generation and movement ofrainfall-induced landslides:effects of grain size and fine-particlecontent[J].Engineering Geology,2003,69(1/2):109–125.
    [14]杨振茂,赵成刚,王兰民,等.饱和黄土的液化特性与稳态强度[J].岩石力学与工程学报,2004,23(22):3853–3860.(YANGZhenmao,ZHAO Chenggang,WANG Lanmin,et al.Liquefactionbehaviors and steady state strength of saturated loess[J].ChineseJournal of Rock Mechanics and Engineering,2004,23(22):3 853–3 860.(in Chinese))
    [15]杨振茂,赵成刚,王兰民.饱和黄土液化的试验研究[J].岩石力学与工程学报,2005,24(5):864–871.(YANG Zhenmao,ZHAOChenggang,WANG Lanmin.Testing study of saturated loessliquefaction[J].Chinese Journal of Rock Mechanics and Engineering,2005,24(5):864–871.(in Chinese))
    [16]SEED H B,IDRISS I M,ARANGO I.Evaluation of liquefactionpotential using field performance data[J].Journal of Geotechnical andGeoenvironmental Engineering,1983,109(3):458–482.
    [17]ISHIHARA K.Liquefaction and flow failure during earthquake[J].Geotechnique,1993,43(3):351–415.
    [18]SEED H B,MARTIN P P,LYSMER J.Pore water pressure changesduring soils liquefaction[J].Journal of the Geotechnical EngineeringDivision,1976,102(4):323–346.
    [19]SHEN Z J.A visco-elastic model for liquefaction of sand[C]//沈珠江土力学论文选集.北京:清华大学出版社,2005:223–230.(SHENZ J.A visco-elastic model for liquefaction of sand[C]//Selected Workson Soil Mechanics of SHEN Zhujiang.Beijing:Tsinghua UniversityPress,2005:223–230.(in Chinese))
    [20]张建民,谢定义.饱和砂土振动孔隙水压力增长的实用算法[J].水利学报,1991,(8):45–51.(ZHANG Jianmin,XIE Dingyi.Utilityarithmetic of pore hydraulic pressure of saturation sand[J].Journal ofHydraulic Engineering,1991,(8):45–51.(in Chinese))
    [21]陈国兴,刘雪珠.南京粉质黏土与粉砂互层土及粉细砂的振动孔压发展规律研究[J].岩土工程学报,2004,26(1):83–86.(CHENGuoxing,LIU Xuezhu.Study on dynamic pore water pressure in siltyclay interbedded with fine sand of Nanjing[J].Chinese Jounal ofGeotechnical Engineering,2004,26(1):83–86.(in Chinese))
    [22]邓龙胜,范文.随机地震荷载作用下黄土震陷的影响因素研究[J].岩石力学与工程学报,2011,30(9):1924–1931.(DENGLongsheng,FAN Wen.Study of influencing factors of loess seismicsubsidence induced by stochastic seismic load[J].Chinese Journal ofRock Mechanics and Engineering,2011,30(9):1 924–1 931.(in Chinese))

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心