可液化地基上地铁车站结构地震反应特征有效应力分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
采用Byrne简化的Martin-Finn振动孔压增量模型描述土体的液化特性,采用Davidenkov黏弹性本构模型描述土体的非线性特性,建立了可液化地基-地铁车站结构非线性静、动力耦合相互作用的二维分析模型,采用动力有效应力分析方法对可液化地基上两层三跨岛式地铁车站结构的地震动反应进行了数值分析,并与动力总应力方法分析的结果进行对比,结果表明:地铁车站结构两侧及底部邻近位置的土体较易液化,地基土的液化对地下结构邻近地表的加速度反应有明显的影响,且在地基土液化的影响下地下结构有明显上浮的趋势,并呈现出中部上凸的变形特征,地下结构的破坏型式为上层顶板和底板两端的受拉破坏、下层底板边跨跨中的上拱弯曲破坏、中柱的受压破坏、侧墙底端的弯曲破坏。
Martin-Finn dynamic pore water pressure incremental model simplified by Byrne is used to describe the liquefaction characteristics of the soil.Davidenkov viscoelastic constitutive model is used to describe the nonlinear characteristics of the soil.Then a two-dimensional analysis model about the nonlinear static-dynamic coupling interaction between liquefiable foundation and metro station structure is established.The dynamic effective stress analysis method is used to analyze the dynamic response of two-layer three-stride island-type metro station structure in liquefiable foundation;and then the results are compared to the case of dynamic total stress numerical analysis.The results show that,the soil which is adjacent to the both sides and bottom of metro station are easier to be liquefied;the liquefaction of foundation has a significant influence on the ground acceleration response;the metro station is obviously floated under the influence of liquefaction and has a convex deformation in the middle of the station.The failure modes of the station are as follows: the tensile failure in upper roof and both ends of bottom plane,the arch bending failure in the middle of lower base plate side span,the compressive failure in interior column,the bending failure in bottom of side wall.
引文
[1]徐志英.土-地下结构动力相互作用分析的有效应力法[J].水利学报,1993,10:59—63.
    [2]MATSUO O, SHIMAZU T, UZUOKA R, et al.Numerical analysis of seismic behavior of embankmentsfounded on liquefiable soils[J]. Soils and Foundations,2000, 40(2): 21-39.
    [3]SUN J Z, SHI G L. Effective stress analysis for the effectsof liquefaction condition on ground motions[C]//Proceedings of 2nd International Conference on Geo-technical Engineering for Disaster Mitigation andRehabilitation. Nanjing: [s. n.], 2008.
    [4]周健,孔戈.基于耦合场分割算法的ANSYS二次开发及其应用[J].地震工程与工程振动,2006,26(2):73—79.ZHOU Jian, KONG Ge. ANSYS redevelopment and itsapplication based on partitioned solution procedures ofcoupled mechanical systems[J]. Earthquake Engi-neering and Engineering Vibration, 2006, 26(2): 73 —79.
    [5]周健,孔戈,秦天.盾构隧道动力有效应力分析方法研究[J].岩石力学与工程学报,2007,26(7):1416—1425.ZHOU Jian, KONG Ge, QIN Tian. Study on effectivestress based on dynamic response analysis method forshield tunnel[J]. Chinese Journal of Rock Mechanicsand Engineering, 2007, 26(7): 1416-1425.
    [6]黄雨,八■厚,张峰.液化场地桩-土-结构动力相互作用的有限元分析[J].岩土工程学报,2005,27(6):646—651.HUANG Yu, YASHIMA Atsushi, ZHANG Feng. Finiteelement analysis of pile-soil-structure dynamic interactionin liquefiable site[J]. Chinese Journal of GeotechnicalEngineering, 2005, 27(6): 646—651.
    [7]庄海洋,陈国兴,梁艳仙,等.土体动非线性黏弹性模 型及其ABAQUs软件的实现[J].岩土力学,2007,28(3):436—442.ZHUANG Hai-yang, CHEN Guo-xing, LIANG Yan-xian,et al. A developed dynamic viscoelastic constitutiverelations of soil and implemented by ABAQUSsoftware[J]. Rock and Soil Mechanics, 2007, 28(3): 436-442.
    [8]陈国兴.岩土地震工程学[M].北京:科学出版社,2007.
    [9]BYRNE P M. A cyclic shear-volume coupling and porepressure model for sand[C]//Proceedings of the 2ndInternational Conference on Recent Advances inGeotechnical Earthquake Engineering and Soil Dynamics.Mssouri: [s. n.], 1991.
    [10]LEE J, FENVES G L. Plastic-damage model for cyclicloading of concrete structures[J]. Journal of EngineeringMechanics, 1998, 124(8): 892-900.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心