高桩承台斜桩基础的地震反应数值分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
为揭示地震荷载作用下高桩承台斜桩基础的地震反应特性,以3种地震波(唐山波、EI波、迁安波)为例,采用三维弹塑性动力有限元技术,分析了桩身倾斜角度、自由桩长对高桩承台斜桩基础地震反应的影响规律。结果表明:各模型桩身轴力最大值均出现在冲刷线以下2.5m左右,而桩身弯矩最大值均位于承台与桩顶交界处;相同模型的左、右斜桩除竖向位移、Y方向弯矩沿桩身呈对称分布外,加速度、水平位移、轴力、总弯矩沿桩身的分布规律相同;承台高度越大,自由桩长越大,桩身轴力越大而弯矩越小;桩身倾斜度越大,其轴力与弯矩均越大,承台高度对桩身内力的影响大于桩身倾斜度;地震荷载中斜桩的加速度与位移反应降低,但轴力和弯矩增大,斜桩总弯矩主要受控于Y方向的弯矩。
In order to reveal seismic behavior of batter pile group with high-rise pile cap,taking three kinds of earthquake waves as example,the effect laws of inclination angle and free pile length on seismic response were analyzed based on three-dimensional elastic-plastic dynamic finite element model.The results show that the maximum axial force of pile appears in 2.5 m approximately beneath the maximum erosion line and the maximum bending moment is located in the interface between pile cap and pile shaft.The vertical displacement and Y-orientation bending moment are symmetrically distributed along the pile shaft,and acceleration,lateral displacement,axial force,bending moment distributions along pile shaft are in the same trend.The greater free pile length,axial force of pile is larger and bending moment of pile is smaller.The greater inclination,axial force and bending moment of pile are larger.The influence on internal force is greater by the pile free length than the pile inclination.Subjected to the seismic load,acceleration and displacement of batter pile decrease,but its axial force and bending moment increase.The total bending moment of batter pile is controlled by Y-orientation bending moment.
引文
[1]Poulos H G.Raked piles-virtues and drawbacks[J].Journal ofGeotechnical and Geoenvironmental Engineering,2006,132(6):795-803.
    [2]AFPS 90.Association franaise de Génie Parasismique.Recommandations AFPS 90[S].Paris:Presses des Ponts etChaussées,1990.
    [3]Seismic Eurocode EC8.Structures in seismic regions,part 5:Foundations,retaining structures,and geotechnical aspects[S].Brussels:European Committee for Standardization,2000.
    [4]Mitchell D,Tinawi R,and Sexsmith R G.Performance ofbridges in the 1989 Loma Prieta earthquake:Lessons forCanadian designers[J].Canadian Journal of Civil Engineering,1991,18(4),711-734.
    [5]Giannakou A,Gerolymos N.Seismic behavior of batter piles:elastic response[J].Journal of Geotechnical andGeoenvironmental Engineering,2010,136(9):1187-1197.
    [6]Juran I,Benslimane A,Hanna S.Engineering analysis ofdynamic behavior of micropile systems[J].TransportationResearch Record,2001,1772:91-106.
    [7]Sadek M,Shahrour I.Influence of the head and tip connectionon the seismic performance of micropiles[J].Soil Dynamics andEarthquake Engineering,2006,26(4):461-468.
    [8]Gerolymos N,Giannakou A,Anastasoopoulos I,et al.Evidence of beneficial role of inclined piles[J].Bulletin ofEarthquake Engineering,2008,6(4):705-722.
    [9]Padron L A,Aznarez J J,Maeso O,et al.Dynamic stiffness ofdeep foundations with inclined piles[J].EarthquakeEngineering and Structural Dynamics,2010,39(12):1053-1070.
    [10]李颖,贡金鑫.有斜桩和无斜桩高桩码头地震反应的非线性有限元分析[J].水利水运工程学报,2011,32(2):1-13.
    [11]武崇福,刘贝贝.波浪和地震作用下高桩承台-土-结构动力响应[J].土木建筑与环境工程,2011,33(6):7-13.
    [12]魏斌,李建中.双柱墩地震反应的轴力-刚度耦合作用[J].土木建筑与环境工程,2012,34(4):66-71.
    [13]Shahrour I,Alsaleh H,Souli M.3Delastoplastic analysis of theseismic performance of inclined micropiles[J].Computers andGeotechnics.2012,39(1):1-7.
    [14]黄雨,舒翔,叶为民,等.桩基础抗震研究的现状[J].工业建筑,2002,32(7):50-54
    [15]魏道攀.考虑土-路面-结构相互作用的城市高架桥地震反应分析[D].哈尔滨:哈尔滨工业大学,2010.
    [16]王金昌,陈页开.ABAQUS在土木工程中的应用[M].杭州:浙江大学出版社,2006.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心