基于响应面法的巨-子结构控制体系地震易损性分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
提出一种基于响应面法的巨-子结构控制体系的地震易损性分析方法。定义巨-子结构控制体系的4个极限状态,提出基于巨-子结构控制体系极限破坏状态确定结构抗震性能水平限值的方法。通过考虑地震动和结构物理参数不确定性,以中心复合设计方法建立地震动-巨-子结构控制体系的样本模型。采用SAP2000对系统的样本模型进行非线性动力时程分析,并分别建立巨-子结构控制体系中主结构、子结构以及隔震层的响应面模型,在此基础上采用蒙特卡洛模拟获得巨-子结构控制体系的易损性曲线,给出巨-子结构控制体系的破坏概率,从而为地震灾害的巨-子结构控制体系损伤评估提供依据,具有较大的工程应用前景。
A response surface method-based fragility analysis method of mega-sub controlled system is proposed. Four ultimate damage state for mega-sub controlled syste m are defined, and based on which, a method for solving the limit values of the four performance levels is put forward. Considering the uncertainties of ground motions characteristics and structures parameters, this paper proposes a fragility analysis method of mega-sub controlled system based on RSM(response surface method). Using central composite design method to construct a series of samples for various ground motions and mega-sub controlled structures, nonlinear dynamic time analysis of the sample model was carried out by SAP2000, and substructures response surface model of mega-sub controlled structure were built, then the fragility curves were obtained using of Monte Carlo method, and the damaging probability of mega-sub controlled structure are given, provides the basis for damage assessment, and is of great engineering application prospects.
引文
[1]Feng M Q,Mita A.Vibration control of tall buildings using mega-sub configuration[J].Journal of Engineering Mechani cs,1995,121(10):1082-1087
    [2]Chai W,Feng M Q.Vibration control of super tall buildings subjected to wind loads[J].International Journal of Nonlinear Mechanics,1997,32(4):665-668
    [3]Bucher C G,Bourgund U.A fast and efficient response surface approach for structural reliability problems[J].Structural Safety,1990,7(1):57-66
    [4]Rajashekhar M R,Adidam S S R.Structural reliability analysis through response surfaces[J].Journal of Structural Engineering,1996,22(4):179-192
    [5]Hwang H H M,Jaw J W.Probabilistic damage analysis of structures[J].Journal of Structural Engineering,1990,116(7):1992-2007
    [6]Shino zuka M,Feng M Q,Jee L.Statistic analysis of fragility curves[J].Journal of Engineering Mechanics,2000,126(20):1224-1231
    [7]Pan Y,Agrawal A K,Agrawal M,et al.Seismic fragility of multispan simply:supported steel highway bridge in New York State:bridge modeling,parametric analysis and retrofit design[J].Journal of Bridge Engineering,2010,5(15):448-461
    [8]Zhang J,Huo Y.Evaluating effectiveness and optimum design of isolation devise for highway bridge using the fragility function method[J].Engineer Structures,2009,31:1648-1660
    [9]Pasticier L,Amadio C,Fragiacomo M.Nonlinear seismic analysis and vulnerability evaluation of a masonry building by means of the SAP2000 v.10cod[J].Earthquake Engineering and Structural Dynamics,2008,37:467-485
    [10]吕大刚,于晓辉,潘峰,等.基于改进云图法的结构概率地震需求分析[J].世界地震工程,2010,26(1):7-15(Lu Dagang,Yu Xiaohui,Pan Feng,et al.Probabilistic seismic demand analysis of structures based on an improved cloud method[J].World Earthquake Engineering,2010,26(1):7-15(in Chinese))
    [11]GB 50011–2010建筑抗震设计规范[S].北京:中国建筑工业出版社,2010(GB 50011–2010 Code for seismic design of buildings[S].Beijing:China Architecture&Building Press,2010(in Chinese))
    [12]Montgomery D C.Design and analysis of experiments[M]fifth edition.New York:John Wiley&Sons,Inc.,2001
    [13]Papila M,Haftka R T.Response surface approximations:noise,error repair,and modeling errors[J].AIAA Journal,2000,12(38):2336-2343
    [14]GB 50017–2003钢结构设计规范[S].北京:中国计划出版社,2003(GB 50017–2003 Code for design of steel structures[S].Beijing:China Planning Press,2010(in Chinese))
    [15]杨超.大型支撑-高层钢结构抗震性能分析[D].大连:大连理工大学,2011(Yang Chao.Analysis of seismic performances of super braced high-rise steel structures[D].Dalian:Dalian University of Technology,2011(in Chinese))

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心