地震作用对小型双曲线冷却塔的影响分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
通过有限元数值模拟的方式分析了小型双曲线冷却塔的地震反应,并通过反应谱方法比较了同类型冷却塔在不同场地条件下的地震响应。将冷却塔划分为壳体筒壁、杆件支柱和环形基础三部分,在基础底部施加水平和竖向地震谱曲线用以模拟地震反应。数值结果表明,场地类型对冷却塔的受力影响较大,且在冷却塔筒体的底部出现了最大的应力和变形。冷却塔结构偏移位移随塔高自底向上先减小后增大,塔体喉部位置是位移偏移量的转折点。因此,应在软土地区加强冷却塔筒体与支柱的接头和咽喉位置的抗震措施,避免出现应力集中导致塔体局部压坏。本文研究结果对于不同地区的小型冷却塔的安全性评价和抗震加固有一定的参考价值。
Based on the finite element numerical simulation,the seismic response characteristic of a small-scale hyperbolic cooling tower is analyzed,and the seismic responses of same type tower under different sites are compared with response spectrum method.In the numerical model,the cooling tower is meshed with shell structure,stanchion and ring foundation,the horizontal and vertical earthquake response spectrums are loaded on the bottom of foundation to simulate the earthquake action.The numerical results show that the effect of site type on the mechanics performance of the tower is obvious,and the maximum stress and deformation appear on the bottom of the cooling tower.The tower displacement decreases gradually from the bottom to the tower throat position,and after increases to the structure top.Therefore,it should be reinforced the aseismatic measures of the throat and the joint connected the structure and the stanchion in the soft soli area to avoid the partial damage generated by the stress concentration of tower.These results also provide a valuable reference on the safety evaluation and aseismatic strengthening for the small-scale cooling tower with different site type.
引文
[1]赵振国.冷却塔[M].北京:中国水利水电出版社,1997Zhao Zhen-guo.Cooling Tower[M].Beijing:China Water Power Press,1997(in Chinese)
    [2]李佳颖,任春玲,黄志龙.自然通风冷却塔的实验及有限元分析[J].力学季刊,2007,28(3):443~447Li Jia-ying,Ren Chun-ling,Huang Zhi-long.Experiment Study and Finite Element Analysis of A Natural Draft Cooling Tower[J].Chinese Quarterly of Mechanics,2007,28(3):443~447(in Chinese)
    [3]薛文,白国良,姚友成,赵钦.超大型双曲冷却塔考虑不同场地类型的地震性能研究[J].水利与建筑工程学报,2010,8(4):224~226Xue Wen,Bai Guo-liang,Yao You-cheng,Zhao Qin.Study on Seismic Performance of Large Hyperbolic Cooling Tower in Different Fields[J].Journal of Water Resources and Architectural Engineering,2010,8(4):224~226(in Chinese)
    [4]李铁英.高层建筑结构在地震作用下的竖向振动研究[J].太原工业大学学报,1997,28(S1):86~90Li Tie-ying.Vertical Vibration Analysis of High-rise Building in Seismic Loading[J].Journal of Taiyuan University of Technology,1997,28(S1):86~90(inChinese)
    [5]陈健云,周晶,马恒春,朱彤.高耸烟囱结构竖向地震响应的模型试验研究及分析[J].建筑结构学报,2005,26(2):87~93Chen Jian-yun,Zhou Jing,Ma Heng-chun,Zhu Tong.Study on Model Test of High-rise Chimney Subjected toVertical Seismic Action[J].Journal of Building Structures,2005,26(2):87~93(in Chinese)
    [6]GB/T50102-2003,工业循环水冷却设计规范[S]GB/T50102-2003,Code for Design of Cooling for Industrial Recirculating Water[S](in Chinese)
    [7]钟香兰.冷却塔结构强度及稳定性三维有限元计算分析[J].山西建筑,2010,36(30):54~55Zhong Xiang-lan.Computational Analysis of Strength and Stability of Cooling Tower by ANSYS[J].Shanxi Architecture,2010,36(30):54~55(in Chinese)
    [8]C Lough,Ray W.Dynamics of Structure[M].New York:McGraw-Hill,1993
    [9]GB50011-2010,建筑抗震设计规范[S]GB50011-2010,Code for Seismic Design of Building[S](in Chinese)
    [10]GB50191-2012,构筑物抗震设计规范[S]GB50191-2012,Design Code for Artiseismic of Special Structures[S](in Chinese)

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心