地震监测在特厚煤层底板突水评价中的应用
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
特厚煤层综放开采对底板扰动大,在底板下方有承压含水层时,存在原生裂隙导水、采动裂隙导水、构造活化导水等底板突水灾害,动态监测底板裂隙的萌生、发展、贯通直至破坏过程是底板突水灾害有效预测、预警的关键。以平朔地区特厚煤层综放工作面回采过程中底板突水问题为研究背景,在工作面建立了一套自主研发的高精度微地震监测系统,实时获取采动过程中采场围岩破裂的三维特征,采用动突水系数法,对该工作面底板突水可能性进行了分析。研究表明:工作面向斜轴部以西90 m突水危险性增大,动突水系数达到峰值,但小于带压开采突水危险标准,认为工作面回采期间无突水危险。通过对比,动突水系数峰值位置与底板最大破裂深度位置具有明显的时空差异,且底板破裂深度峰值超前于动突水系数峰值,为通过底板破裂深度进行突水危险的实时预警提供了依据。
The distrubance of the full-mechanized caving mining of special thick coal seam to the floor is great,if the confined aquifer layer belows the floor,water inrush disaters such as primary fracture conductivity,mining-induced conductivity and tectonic activation water could happan. So the key content of prediction and warning of the water inrush is conducting dynamic monitoring of slab crack initiation,development and breakthrough until failure process. Taking the floor water inrush question existing in the process of full-mechanized caving mining of special thick coal seam in the Pingshuo region,the high-precision microseismic monitoring system developed independently is established in the working face so as to obtain the three-dimensional characteristics of the stope wall rocks burst during the process of mining.The water inrush possibility is analyzed based on dynamic water inrush coefficient method. The research results show that,the water inrush of the area which is 90 m to the west of syncline axis of working face,the peak dynamic water inrush coefficient is obtained,but it is less than the water inrush risk standard of under mining pressure. So there is no water inrush danger appearing in the working face during stoping.By contrast,the time and space differences between the position of peak dynamic water inrush coefficient and the position of floor biggest failure depth are obvious,the peak of floor failure depth is ahead of the peak of dynamic peak water inrush coefficient. The above research results can provide some reference for conducting real-time warning of the water inrush danger based on the floor failure depth.
引文
[1]武强,张志龙,马积福.煤层底板突水评价的新型实用方法Ⅰ-主控指标体系的建设[J].煤炭学报,2007,32(1):42-47.
    [2]武强,张志龙,张生元,等.煤层底板突水评价的新型实用方法Ⅱ-脆弱性指数法[J].煤炭学报,2007,32(11):1121-1126.
    [3]武强,解淑寒,裴振江,等.煤炭底板突水评价的新型实用方法Ⅲ-基于GIS的ANN型脆弱性指数法应用[J].煤炭学报,2007,32(12):1301-1306.
    [4]罗立平,彭苏萍.承压水体上开采底板突水灾害机理的研究[J].煤炭学报,2005,30(4):459-462.
    [5]谢兴楠,叶根喜.测井“静态”探测与微震“动态”监测技术在矿井突水综合预警中的应用[J].中国矿业,2012,21(1):110-114.
    [6]程久龙,于师建,宋扬.煤层底板破坏深度的声波CT探测试验研究[J].煤炭学报,1999,24(6):576-580.
    [7]赵伟.高密度电法在煤层底板破坏规律中的应用研究[D].邯郸:河北工程大学,2010.
    [8]姜福兴,XUN Luo.微震监测技术在矿井岩层破裂监测中的应用[J].岩土工程学报,2002,24(2):147-149.
    [9]逄焕东,姜福兴,张兴民.微地震监测技术在矿井灾害防治中的应用[J].金属矿山,2004(12):58-61.
    [10]贾明魁,姜福兴,尹永明,等.高精度微地震监测预警突水技术在演马庄矿的应用[J].煤矿安全,2011(12):93-95.
    [11]汪华君,姜福兴,成云海,等.覆岩导水裂隙带高度的微地震(MS)监测研究[J].煤炭工程,2006(3):74-76.
    [12]张荣华.两种突水系数计算公式的比较[J].中国煤炭地质,2012,24(7):44-47.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心