速度脉冲地震作用下偏心结构的弹塑性抗震研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
研究速度脉冲地震下,刚度偏心、强度偏心和两者组合偏心体系的弹塑性抗震需求。基于新开发的变轴力-双向弯曲模型,选取8条速度脉冲地震记录,进行了强速度脉冲地震效应和偏心布置双重不利条件下单层RC框架结构的弹塑性动力时程分析,讨论了结构的延性、位移、扭矩和扭转角变化规律。结果表明,偏心结构在速度脉冲工况下比在非速度脉冲工况下有更大的弹塑性抗震需求;刚度偏心对结构弹塑性抗震需求不敏感,强度偏心对弹塑性抗震需求的影响最为显著,组合偏心的影响介于两者之间。随强度偏心率增大,弱侧延性需求呈非线性急剧增大,最大达到对称结构延性需求的3.09倍,位移、扭矩和扭转角也迅速增大,偏心率为0.2时扭转角为偏心率为0.05时的6.4倍;建议偏心结构弹塑性分析时宜增加强度偏心作为基本参数,并考虑速度脉冲地震效应。
The elastoplastic seismic demand of structural systems, with stiffness, strength and combined eccentricity, subjected to pulse-like ground motions is investigated. Based on the newly-developed varying axial load-biaxial bending model, nonlinear time history analysis is conducted to study a single-storey RC frame subjected to eight ground motions, considering the pulse effect and eccentricity. The results of ductility, drift, torsion and rotation are discussed. The results show that eccentric system experiences higher elastoplastic demand under pulse-like cases compared with non-pulse-like cases. The stiffness eccentricity is insensitive to elastoplastic response, while the strength eccentricity has the most influences. The ductility in the weak side increases greatly with increasing strength eccentricity, and the maximum ductility is 3.09 times higher than that of symmetric structure. At the same time, the drift, torsion and rotation increase rapidly, and the rotation with eccentricity ratio of 0.2 is 6.4 times higher than that of 0.05. It is suggested that the strength eccentricity should be considered as a parameter in elastoplastic analysis of eccentric systems, and the velocity pulse-like effect should also be considered.
引文
[1]De Stefano M,Pintucchi B.A review of research on seismic behaviour of irregular building structures since2002[J].Bulletin of Earthquake Engineering,2008,6(2):285―308.
    [2]王墩,吕西林.平面不规则结构非弹性扭转地震反应研究进展[J].地震工程与工程振动,2010,30(2):51―58.Wang Dun,LüXilin.Progress in study on inelastic torsional seismic response of asymmetric buildings[J].Journal of earthquake engineering and engineering vibration,2010,30(2):51―58.(in Chinese)
    [3]Ayre R S.Interconnection of translational and torsional vibrations in buildings[J].Bulletin of the Seismological Society of America,1938,28(2):89―130.
    [4]Kan C L,Chopra A K.Torsional coupling and earthquake response of simple elastic and inelastic systems[J].Journal of the Structural Division,1981,107(8):1569―1588.
    [5]Sadek A W,Tso W K.Strength eccentricity concept for inelastic analysis of asymmetrical structures[J].Engineering Structures,1989,11(3):189―194.
    [6]Bugeja M N,Thambiratnam D P,Brameld G H.The influence of stiffness and strength eccentricities on the inelastic earthquake response of asymmetric structures[J].Engineering Structures,1999,21(9):856―863.
    [7]Dutta S C,Das P K,Roy R.Seismic behavior of code-designed bi-directionally eccentric systems[J].Journal of Structural Engineering,2005,131(10):1497―1514.
    [8]Dutta S C,Roy R.Seismic demand of low-rise multistory systems with general asymmetry[J].Journal of Engineering Mechanics,2012,138(1):1―11.
    [9]Roy R,Chakroborty S.Seismic demand of plan-asymmetric structures:a revisit[J].Earthquake Engineering and Engineering Vibration,2013,12(1):99―117.
    [10]Bosco M,Marino E M,Rossi P P.An analytical method for the evaluation of the in-plan irregularity of non-regularly asymmetric buildings[J].Bulletin of Earthquake Engineering,2013,11(5):1423―1445.
    [11]王耀伟.平面不规则结构非弹性地震反应规律研究[D].重庆:重庆大学,2003:1―196.Wang Yaowei.A study on the inelastic earthquake response of the asymmetric-plan structure[D].Chongqing:Chongqing university,2003:1―196.(in Chinese)
    [12]刘畅.地震作用下偏心结构扭转反应研究[D].长沙:湖南大学,2007:1―162.Liu Chang.Study on torsional response of eccentric structures under seismic action[D].Changsha:Hunan university,2007:1―162.(in Chinese)
    [13]Bertero V V,Mahin S A,Herrera R A.Aseismic design implication of near-fault San Fernando earthquake records[J].Earthquake Engineering and Structural Dynamics,1978,6(1):31―42.
    [14]Krawinkler H,Medina R,Alavi B.Seismic drift and ductility demands and their dependence on ground motions[J].Engineering Structures,2003,25(5):637―653.
    [15]Baker J W.Quantitative classification of near-fault ground motions using wavelet analysis[J].Bulletin of the Seismological Society of America,2007,97(5):1486―1501.
    [16]赵凤新,韦韬,张郁山.近断层速度脉冲对钢筋混凝土框架结构地震反应的影响[J].工程力学,2008,25(10):180―186.Zhao Fengxin,Wei Tao,Zhang Yushan.Influence of near-fault velocity pulse on the seismic response of reinfored concrete frame[J].Engineering Mechanics,2008,25(10):180―186.(in Chinese)
    [17]周靖,陈凯亮,方小丹.基于剪切型结构的速度脉冲地震地面运动强度表征参数评估[J].工程力学,2011,28(6):149―155.Zhou Jing,Chen Kailiang,Fang Xiaodan.Evaluation of intensity measures for velocity pulse-like earthquake ground motions based on shear type MDOF systems[J].Engineering Mechanics,2011,28(6):149―155.(in Chinese)
    [18]AS/NZS 1170.4.Structural design actions-Part 4earthquake actions,general design requirement and loading on structures[S].Australian:New Zealand,2004.
    [19]GB 50011-2010,建筑抗震设计规范[S].北京:中国建筑工业出版社,2010.GB 50011-2010,Code for seismic design of buildings[S].Beijing:China Architecture Industry Press,2010.(in Chinese)
    [20]Li K N.CANNY program for three-dimensional nonlinear static and dynamic structural analysis[CP].http://members.shaw.ca/Canny NAS/,2012.8.10.
    [21]Kozo system.Structural nonlinear analysis program[CP].http://www.kozo.co.jp/program/kozo/snap/index.html,2012.8.10.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心