SMA弹簧-摩擦支座基础隔震体系的地震响应分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
大尺寸超弹性形状记忆合金(Shape Memory Alloy,简称SMA)螺旋弹簧是一种可用于结构减振控制的阻尼器。然而,迄今为止这种超弹性阻尼器在土木工程结构隔震领域的研究较少。本文提出了一种SMA弹簧-摩擦支座(SMA Spring-Friction Bearing,简称SFB)并研究了其隔震性能。首先,在考虑材料内部相变过程的SMA本构关系模型的基础上,针对超弹性SMA弹簧的恢复力性能建立了一种便于工程应用的新的宏观现象模型。随后,推导了SFB隔震结构体系运动方程,利用MATLAB程序进行了结构地震响应的数值模拟。最后,将SFB隔震体系的地震响应与具有相同结构参数的纯摩擦支座(Pure Friction Bearing,简称PFB)隔震体系和摩擦摆(Friction Pendulum System,简称FPS)隔震体系的地震响应进行了对比分析。研究结果表明,SFB对上部结构具有良好的加速度减振效果,同时,该支座较其它两种滑动支座在降低隔震层位移峰值响应和抑制隔震支座残余位移两方面具有明显的优势。
The large-scale superelastic shape memory alloy( SMA) helical spring is a type of smart damper for vibration control of civil structures. However,studies on the superelastic springs for seismic isolation of structures have not been reported widely up to now. In this paper,a combined isolation device consisting of SMA spring and flat sliding bearing entitledas SMA spring-friction bearing( SFB) is developed and its seismic isolation performance is investigated. First,a new macroscopic model based on the constitutive relationship considering phase transformation of SMA is established to simulate the restoring force of superelastic helical springs. Then,motion equations for a structural system isolated by SFB are derived. Next,a set of seismic analyses of the isolated structure is performed by using Matlab program. Finally,the seismic response of the structural system isolated by the SFB is compared with the response of the comparable structure isolated by the pure friction bearing( PFB) and same structureisolated by the friction pendulum system( FPS). The results indicate that the seismic acceleration response of the superstructure can be noticeably reduced by using SFB. It is also observed that the SFB shows superior to other types of sliding bearing in reducing peak bearing displacement and residual bearing deformation after earthquake.
引文
[1]周福霖,崔鸿超,安部重孝,等.东日本大地震考察报告[J].建筑结构,2012,42(4):1-20.ZHOU Fulin,CUI Hongchao,Shigetaka A,et al.Inspection report of the disaster of east Japan earthquake by sino-japanese joint mission[J].Building Structures,2012,42(4):1-20.(in Chinese)
    [2]Graesser E,Cozzarelli F.Shape memory alloys as new materials for aseismic isolation[J].Journal of Engineering Mechanics,1991,117(11):2590-2608.
    [3]Dolce M,Cardone D,Ponzo F.Shaking table tests on reinforced concrete frames with different isolation systems[J].Earthquake Engineering and Structural Dynamics,2007,36(5):573-596.
    [4]Ozbulut O,Hurlebaus S.Optimal design of superelastic-friction base isolators for seismic protection of highway bridges against near-field earthquakes[J].Earthquake Engineering and Structural Dynamics,2011,40(3):273-291.
    [5]庄鹏,薛素铎,李彬双.SMA-橡胶支座隔震系统的动力响应研究[J].振动与冲击,2006,25(3):85-89.ZHUANG Peng,XUE Suduo,LI Binshuang.Dynamic responses of a seismic isolation system using SMA-rubber bearing[J].Journal of Vibration and Shock,2006,25(3):85-89.(in Chinese)
    [6]Cardone D,Perrone G,Sofia S.Numerical studies on the seismic retrofit of bridges using shape memory alloys[J].Journal of Materials Engineering and Performance,2011,20(4-5):535-543.
    [7]Bhuiyan A,Alam M.Seismic performance assessment of highway bridges equipped with superelastic shape memory alloy-based laminated rubber isolation bearing[J].Engineering Structures,2013,49:396-407.
    [8]陈鑫,李爱群,丁幼亮,等.空间网架结构形状记忆合金隔震研究[J].工程力学,2010,27(9):86-93.CHEN Xin,LI Aiqun,DING Youliang,et al.Study on isolation of space grid structures using shape memory alloy[J].Engineering Mechanics,2010,27(9):86-93.(in Chinese)
    [9]何小辉.钢框架新型耗能梁柱节点滞回性能的研究[D].哈尔滨:哈尔滨工业大学,2012.HE Xiaohui.Hysteretic behavior of new energy-dissipated beam-to-column connections in steel frame[D].Harbin:Harbin Institute of Technology,2012.(in Chinese)
    [10]Bhuiyan A,Alam M.Seismic vulnerability assessment of a multi-span continuous highway bridge fitted with shape memory alloy bars and laminated rubber bearing[J].Earthquake Spectra,2012,28(4):1379-1404.
    [11]Speicher M,Hodgon D,Des Roches R,et al.Shape memory alloy tension/compression device for seismic retrofit of buildings[J].Journal of Materials Engineering and Performance,2009,18(5-6):746-753.
    [12]Liang C,Rogers C.One-dimensional thermomechnical constitutive relations for shape memory materials[J].Journal of Intelligent Systems and Structures,1990,1(2):207-234.
    [13]Liang C,Rogers C.Shape memory alloy spring with applications in vibration control[J].Journal of Vibration and Acoustics,1993,115(1):129-135.
    [14]Dolce M,Cardone D.Theoretical and experimental studies for the application of shape memory alloy in civil engineering[J].Journal of Engineering Materials and Technology,2006,128:303-311.
    [15]Wen Y K.Method for random vibration of hysteretic system[J].Journal of the Engineering Mechanics Division,1976,102(2):249-263.
    [16]Constantinou M,Mokha A,Reinhorn A.Teflon bearing in base isolation II:modeling[J].Journal of Structural Engineering,1990,116(2):455-474.
    [17]Mokha A,Constantinou M,Reinhorn A,et al.Experimental study of friction-pendulum isolation system[J].Journal of Structural Engineering,1991,117(4):1201-1217.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心