考虑SSI效应的核反应堆及地表地震反应
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
以ABAQUS/Standard作为研究平台,将CPR1000型核反应堆结构简化为多质点集中质量模型,建立二维CPR1000型核岛反应堆结构与地基相互作用模型,采用剪切变形梁单元模拟核反应堆结构,缩减积分平面单元模拟场地,主要研究了SSI效应对于核反应堆结构及附近场地地表地震反应的影响,结果表明:SSI效应对核反应堆附近5~7倍基础半径范围场地地表的地震反应特性有显著影响,对地表峰加速度的影响超过15%,场地基本周期延长0.04 s以上;SSI效应使核反应堆安全壳结构及内部结构的基本周期由0.24 s、0.18 s依次增大为0.4 s、0.26 s,对核反应堆厂房结构节点的地震反应起着不利作用,使安全壳结构、内部结构的相对位移分别增大43%~76%和26%~59%,使两者的峰值加速度分别增大31%~65%和12%~75%。
Based on the ABAQUS / Standard software,the CPR1000 reactor structure was simplified to be a lumped mass parameter model with multi-particle system,then,an interaction system between a two-dimensional finite element model of the horizontal layer soil and a CPR1000 nuclear reactor structure was established. The reactor structure and soil were simulated by a beam element including shear deformation effect and a reduced integration in 8-nodes plane element to study the effects of SSI on seismic responses on the reactor structure and its adjacent ground surface. The results show that,the SSI effects had greatly impact on seismic responses of the adjacent ground surface in five to seven times of the base dimension away from the base center of a reactor structure,the variation of peak acceleration of adjacent ground surface exceeded 15%,the predominant period of site was extended over 0. 04 s. Meanwhile,due to the effects of SSI,the first fundamental period of the nuclear shield structure and its internal structure increased from 0. 24 s and 0. 16 s to 0. 40 s and 0. 26 s,respectively,the peak of relative displacement response of the nuclear shield structure and its internal structure was increased 43% ~ 76% and 26% ~ 59%,respectively,and the peak acceleration of the nuclear shield structure and its internal structure was increased 31% ~65% and 12% ~ 75%,respectively.
引文
[1]张国栋.结构相互作用体系随机地震反应分析[D].武汉:武汉大学,2004.ZHANG Guodong.The stochastic seismic response analysis for soil-structure interaction system[D].Wuhan:Wuhan University,2004.(in Chinese)
    [2]Borja R,Chao Y,Montáns J,et al.SSI effects on ground motion at Lotung LSST site[J].Journal of geotechnical and Geo Environmental Engineering,1999,125(9):760-770.
    [3]谢君斐.罗东(台湾).-结构相互作用大比例模型试验的启示(I)[J].世界地震工程,1993(3):41-52.XIE Junfei.The learning from the large scale Lotong soil-structure interaction experiments(I)[J].World Eathquake Engineering,1993(3):41-52.(in Chinese)
    [4]谢君斐.罗东(台湾).-结构相互作用大比例模型试验的启示(II)[J].世界地震工程,1993(4):49-59.XIE Junfei.The learning from the large scale Lotong soil-structure interaction experiments(II)[J].World Eathquake Engineering,1993(4):49-59.(in Chinese)
    [5]Cárdenas M,Bard Y,Guéguen P,et al.Soil-structure interaction in Mexico City.Wave field radiated away from Jalapa structure:data and modelling[C]∥12th World Conference on Earthquake Engineering,Auckland,New Zealand.2000:385.
    [6]Guéguen P,Bard Y,Chávez J.Site-city seismic interaction in mexico City-Like environments:an analytical study[J].Bulletin of the Seismological Society of America,2002,92(2):794-811.
    [7]Francisio J,Chávez G,Cárdenas M.The contribution of the built environment to the‘free-field’ground motion in Mexico City[J].Soil Dynamics and Earthquake Engineering,2002,22(9):773-780.
    [8]郭达文.复杂场地下核电厂三维-结构相互作用地震反应特征分析[D].广州:广东工业大学,2012.GUO Dawen.Characteristic analysis for seismic response of 3D soil-structure interaction of nuclear power plant on the complex site conditions[D].Guangzhou:Guangdong University of Technology,2012.(in Chinese)
    [9]王志亮,阳栋.地震载荷下核岛动力响应数值模拟[J].岩力学,2013,34(2):400-406.WANG Zhiliang,YANG Dong.Numerical simulation of dynamic response of nuclear island under seismic load[J].Rock and Soil Mechanics,2013,34(2):400-406.(in Chinese)
    [10]徐磊,陈国兴.地震基岩面的选取对核岛场地地表地震反应影响[J].地震工程与工程振动,2015(已录用,稿号:201405014)XU Lei,CHEN Guoxing.Effects of the soil depth of seismic bedrock interface on ground surface seismic response of nuclear island site[J].Earthquake Engineering and Engineering Dynamics,2015(Accepted,Document No:201405014).(in Chinese)
    [11]TR-102293 Guidelines for Determining Design Basis Ground Motions[S].America:Electric Power Research Center,1993.
    [12]JEON S.Y.Dynamic and cyclic properties in shear of tuff specimens from Yucca Mountain,Nevada[D].America:The University of Texas at Austin,2008.
    [13]NUREG-0800 Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants,Revision3[S].America:U.S.Nuclear Regulatory Commission,2007.
    [14]陈国兴,庄海洋.基于Davidenkov骨架曲线的体动力本构关系及其参数研究[J].岩工程学报,2005,27(8):860-864.CHEN Guoxing,ZHUANG Haiyang.Developed nonlinear dynamic constitutive relations of soils based on Davidenkov skeleton curve[J].Chinese Journal of Geotechnical Engineering,2005,27(8):860-864.(in Chinese)
    [15]李忠献,李忠诚,沈望霞.核反应堆厂房结构楼层反应谱的敏感性分析[J].核动力工程,2005,26(1):44-50.LI Zhongxian,LI Zhongcheng,SHEN Wangxia.Sensitivity analysis for floor response spectra of nuclear reactor structures[J].Nuclear Power Engineering,2005,26(1):44-50.(in Chinese)
    [16]唐智荣.钢安全壳在压力和地震作用下的动力响应分析[D].哈尔滨:哈尔滨工程大学,2011.TANG Zhirong.Dynamic analysis of steel containment vessel under pressure and earthquake action[D].Harbin:Harbin Engineering University,2011.(in Chinese)
    [17]童庆海.核电厂安全壳及内部结构基于性态的抗震能力评估[D].哈尔滨:哈尔滨工业大学,2013.TONG Qinghai.Performance assessments of nuclear power plants containment and internal structure for earthquake[D].Harbin:Harbin Institute of Technology,2013.(in Chinese)
    [18]凌云,王晓雯,袁芳.CNP1000安全壳抗震分析[J].核技术,2010(2):138-142.LING Yun,WANG Xiaowen,YUAN Fang.CNP1000 containment earthquake resistance analysis[J].Nuclear Techniques,2010(2):138-142.(in Chinese)
    [19]卢文达,廖汶,张强.地震荷载作用下钢筋混凝安全壳的可靠性分析[J].上海理工大学学报,1998,20(1):10-14.LU Wenda,LIAO Wen,ZHANG Qiang.Seismic reliability analysis of reinforced concrete containment[J].Journal of University of Shanghai for Science and Technology,1998,20(1):10-14.(in Chinese)
    [20]杨松.考虑-结构相互作用的核电站安全壳结构地震易损性分析[D].哈尔滨:哈尔滨工业大学,2012.YANG Song.Sesmic frigility analysis of nuclear power plant containment considering soil-structure interaction[D].Harbin:Harbin Institute of Technology,2012.(in Chinese)

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心