乌鲁木齐地震断裂带泉水古菌群落对水文地球化学元素的响应
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
【目的】揭示乌鲁木齐地震断裂带泉水中古菌群落对水文地球化学元素变化的响应。【方法】采用微孔滤膜法收集泉水中菌体,直接提取环境总DNA,嵌套式PCR扩增古菌16S rDNA基因V3区,变性梯度凝胶电泳(DGGE)检测古菌群落结构的变化,所得信息与监测的地球化学指标进行典型相关分析。【结果】DGGE分析及切胶测序共得到古菌14个主要类群,分属于广域古菌和泉古菌两个门,全部为不可培养类群,其中前者占绝对优势。典型相关性分析发现类群B-11和B-12与He以及CH4含量呈正相关,与硫化物呈负相关;类群B-2、B-3和B-9与F-离子含量成正相关而类群B-13与它呈负相关;而仅有的泉古菌B-7与CH4呈负相关。另外,所得绝大部分古菌类群与其它冷泉或者低温环境中发现的古菌类群具有95%左右的相似性。【结论】乌鲁木齐断裂带泉水古菌群落能够对泉水中的某些地球化学元素变化产生一定的响应,并且可能存在大量嗜冷新类群。
【Objective】The study was to reveal the archaeal community response to the hydrogeochemical element changes in the spring water at seismic fault belt in Urumqi.【Method】Microbial communities were collected by microporous membrane filtration,then total DNA were directly extracted by enzymatic digestion and the V3 region of the archaeal 16S rDNA gene was amplified by Nested PCR.The change of archaeal community structure was detected by denatured gradient gel electrophoresis(DGGE) analysis,the correlations between hydrogeochemical parameters and obtained information were analyzed by canonical correspondence analysis(CCA).【Result】Fourteen major bands were obtained from DGGE gels and used for direct sequencing.BLAST analysis showed that all of them were uncultured archaea and phylogenetic analysis classified them into phyla Euryarchaeota and Crenarchaeota,and the former was dominating.CCA revealed that groups B-11 and B-12 were positively correlated to helium and methane,and negatively correlated to sulfide;groups B2,B-3 and B-9 were positively correlated to F-,while,the group B-13 was the opposite;the only Crenarchaeota archaeal B-7 was negatively correlated to methane.【Conclusion】The results suggest that archaeal communities in seismic fault belt spring water could response to some hydrogeochemical parameter changes and there maybe existence of large number of novel psychrophilic groups.
引文
[1]施鑫源,张元禧.地下水水文学[M].北京:中国水利水电出版社,1997:1-30.
    [2]高小其,许秋龙,张学敏,等.乌鲁木齐10号泉流体综合观测及映震灵敏性初析[J].内陆地震,2000,14(3):243-251.
    [3]Amir M,Gal H R,Bella Groisman1,et al.Adaptive prediction of environmental changes by microorganisms[J].Nature,2009,460(7252):220-224.
    [4]吴江超,高小其,曾军,等.新疆断裂带泉水中细菌群落结构的PCR-DGGE分析[J].生态学报,2011,31(2):506-512.
    [5]吴江超,张涛,孙建,等.新疆地震断裂带泉水微生物群落功能多样性[J].新疆农业科学,2010,(5):1 052-1 056.
    [6]Emilie L,Bénédite L,Lo c T H,et al.Analysis of bacterial diversity in river biofilms using16S rDNA PCR-DGGE methodological settings andfingerprints interpretation[J].Water Research,2005,39:380-388.
    [7]Muyzer G,de waal E D,Uitterlinden A.Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerasechain reaction-amplified genes coding for 16S Rrna[J].Applied and Environmental Microbiology,1993,59:695-700.
    [8]Andreas H F,Ines W,Gabriela R,et al.Bacterial dynamics in spring water of alpine karst aquifers indicates the presence of stable autochthonousmicrobial endokarst communities[J].Environmental Microbiology,2005,7(8):1 248-1 259.
    [9]Nancy N P,Dale T A,Wayne H P,et al.Characterization of the Prokaryotic Diversity in Cold Saline Perennial Springs of the Canadian High Arctic[J].Applied and Environmental Microbiology,2007:1 532-1 543.
    [10]常桂兰.氡与氡的危害[J].铀矿地质,2002,18(2):122-128.
    [11]李晓辉,申仲华,李建华.水中氡的危害及监管现状[J].现代预防医学.2005,32(10):1 313-1 323.
    [12]Reinhard Wilms,Henrik Sass,Beate K pke,et al.Specific Bacterial,Archaeal,and Eukaryotic Communities in Tidal-Flat Sediments along aVertical Profile of Several Meters[J].Applied and Environmental Microbiology,2006,72:2 756-2 764.
    [13]Costantno Vetriani,Holger W,Barbara J.Macgregor,et al.Population Structure and Phylogenetic Characterization of Marine Benthic Archaeain Deep-Sea Sediments[J].Applied and Environmental Microbiology,1999,65(10):4 375-4 384.
    [14]Takai K,Sugm A,Itoh T,et al.Palaeococcus ferrophilus gen.nov.,sp.nov.,a barophilic,hyperthermophilic archaeon from a deep-seahydrothermal vent chimney[J].International Journal of Systematic and Evolutionary Microbiology,2000,50:489-500.
    [15]申卫收,尹睿,林先贵,等.绰墩山遗址古水稻土细菌与古茵群落的PCR-DGGE分析[J].生态学报,2008,28(6):2 916-2 924.
    [16]李华兰,王涛,李沁元,等.滇西二高温热泉原核生物多样性的比较分析[J].安徽农业科学,2009,37(28):13 480-13 481,1 353.
    [17]姜丽晶,彭晓彤,周怀阳,等.非培养手段分析珠江口淇澳岛海岸带沉积物中的古菌多样性[J].海洋学报,2008,30(4):115-122.
    [18]王刘阳,尹小波,胡国全.分子生物学技术在产甲烷古菌研究中的应用[J].中国沼气,2008,26(1):19-24.
    [19]范华鹏,薛燕芬,曾艳,等.西藏扎布耶茶卡盐碱湖古菌多样性的非培养技术分析[J].微生物学报,2003,43(4):401-408.
    [20]曾军,杨红梅,吴江超,等.新疆沙湾冷泉沉积物中免培养古菌多样性初步研究[J].微生物学报.2010,50(5):574-579.
    [21]Fierer N,Schimel J.Influence of drying-rewetting frequency on soil bacterial community structure[J].Microbial Ecology.2003,45:63-71.
    [22]Shaheen B H,Nasreen B,James TH.Depth distribution of microbial diversity in Mono Lake,a Meromictic Soda Lake in California[J].Applied andenvironmental microbiology,2003,69(2):1 030-1 042.
    [23]钟文辉,蔡祖聪,尹力初,等.用PCR-DGGE研究长期施用无机肥对种稻红壤微生物群落多样性的影响[J].生态学报,2007,27(10):4 011-4 018.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心