琼东南盆地中央峡谷沉积充填特征与储层分布规律
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
中央峡谷是平行于陆坡跨盆地发育的深水水道-天然堤体系。应用2D和3D地震数据,结合岩心和测录井资料,分析了琼东南盆地中央峡谷充填的岩性、砂体类型和特征、分布规律及控制因素。认为距今10.5~4.2 Ma期间,琼东南盆地中央峡谷内发育5期次级水道充填,沉积了浅灰色砾质细砂岩、厚层块状/粒序细砂岩、粉砂岩和灰黑色粉砂质泥岩、泥岩等,发育4种充填相,包括浊流、碎屑流、滑塌等重力流过程和半深海沉积。应用井-震对比并结合均方根振幅属性分析,识别出4种砂体类型,分别为峡谷轴部砂体、天然堤砂体、侧向加积砂体和侵蚀残余砂体。砂体类型在纵向上的分布具有分异性特征,即峡谷充填总体在底部—中部以砂岩为主,上部由粉砂岩构成,在不同次级峡谷充填内,同样是砂岩在下,向上渐变为粉砂岩的正旋回特征。另外,砂体在横向上的分布具有分段性特征,第1—3期峡谷充填砂体,主要发育在峡谷中游;第4、5期充填砂体仅发育在峡谷中上游。中央峡谷充填砂体分布主要受母源区岩性、长距离及多次搬运、初始流体规模及流态、次级水道的改造与破坏、中央峡谷发育方式和盆地构造等因素控制。
The central canyon is a deep-water channel-levee system developed in parallel to the slope across Qiongdongnan Basin.This study investigated depositional filling characteristics of central canyon in terms of the lithological compositions,the types of sand bodies,the patterns of reservoir distribution,and the controlling factors using2D/3D seismic data combined with core,drilling and well-logging data.The results show that during the period of 10.5-4.2 Ma,the canyon was filled with five-stage secondary channels and deposited with light-gray gravelly fine sandstone,massive and graded fine sandstone,siltstone,dark-black silty mudstone,and mudstone.Four types of depositional filling were developed with hemiplegic deposits and gravity flow of turbidity currents,debris,and slumps.Based on well-seismic calibration and root-mean-square seismic attribution analysis,four types of sand body were identified in the canyon,including canyon-axis sand bodies,natural levee sand bodies,lateral accretion sand bodies,and erosion residual sand bodies.These sand bodies show distinct variations in the vertical distribution.The canyon is mainly filled with sandstone in the bottom to middle part and siltstone in the upper part,with similar characteristics of positive cycles in the secondary fillings.Additionally,the sand bodies show segmented distribution horizontally.Stage 1-3 fillings of sandstone are distributed mainly in the middle reaches of the canyon,while stage 4 and 5 fillings of sandstones are mainly in the middle-upstream.Major factors controlling the distribution of sand bodies in the canyon include lithological composition of the provenance,distant and multiple transports,scale and flow pattern of initial gravity flows,destruction and reconstruction of secondary channels,development mode of the canyon,and tectonic framework of the basin.
引文
[1]Chen Wei.Status and challenges of Chinese deepwater oil and gas development[J].Petroleum Science,2011,8(4):477-484.
    [2]王英民,徐强,李冬,等.南海西北部晚中新世的红河海底扇[J].科学通报,2011,56(10):781-787.Wang Yingmin,Xu Qiang,Li Dong,et al.Late Miocene Red River submarine fan,northwestern South China Sea[J].Chinese Science Bulletin,2011,56(14):1488-1494.
    [3]Shanmugam G.Deep-water process and facies models:implications for sandstone petroleum reservoirs[M].Oxford:Elsevier,2006.
    [4]Wonham J P,Jayr S,Mougamba R,et al.3D sedimentary evolution of a canyon fill(Lower Miocene-age)from the Mandorove Formation,offshore Gabon[J].Marine and Petroleum Geology,2000,17(2):175-197.
    [5]Schwenk T,SpieβV,Breitzke M,et al.The architecture and evolution of the Middle Bengal Fan in vicinity of the active channellevee system imaged by high-resolution seismic data[J].Marine and Petroleum Geology,2005,22(5):637-656.
    [6]Ducassou E,Migeon S,Mulder T,et al.Evolution of the Nile deep-sea turbidite system during the Late Quaternary:influence of climate change on fan sedimentation[J].Sedimentology,2009,56(7):2061-2090.
    [7]Kolla V,Bourges Ph,Urruty J-M,et al.Evolution of deep-water Tertiary sinuous channels offshore Angola(west Africa)and implications for reservoir architecture[J].AAPG Bulletin,2001,85(8):1373-1405.
    [8]Babonneau N,Savoye B,Cremer M,et al.Morphology and architecture of the present canyon and channel system of the Zaire deep-sea fan[J].Marine and Petroleum Geology,2002,19(4):445-467.
    [9]Canals M,Puig P,de Madron X D,et al.Flushing submarine canyons[J].Nature,2006,444(7117):354-357.
    [10]Harris P T,Whiteway T.Global distribution of large submarine canyons:geomorphic differences between active and passive continental margins[J].Marine Geology,2011,285(1/4):69-86.
    [11]袁圣强,吴时国,姚根顺.琼东南陆坡深水水道主控因素及勘探应用[J].海洋地质与第四纪地质,2010,30(2):61-66.Yuan Shenqiang,Wu Shiguo,Yao Genshun.The controlling factors analysis of Qiongdongnan slope deepwater channels and its significance to the hydrocarbon exploration[J].Marine Geology&Quaternary Geology,2010,30(2):61-66.
    [12]Lien T,Walker R G,Martinsen O J.Turbidites in the upper carboniferous ross formation,western Ireland:reconstruction of a channel and spillover system[J].Sedimentology,2003,50(1):113-148.
    [13]Abreu V,Sullivan M,Pirmez C,et al.Lateral accretion packages(LAPs):an important reservoir element in deep water sinuous channels[J].Marine and Petroleum Geology,2003,20(6/8):631-648.
    [14]Beaubouef R T.Deep-water leveed-channel complexes of the Cerro Toro Formation,Upper Cretaceous,southern Chile[J].AAPG Bulletin,2004,88(11):1471-1500.
    [15]Kane I A,Dykstra M L,Kneller B C,et al.Architecture of a coarse-grained channel-levée system:the Rosario Formation,Baja California,Mexico[J].Sedimentology,2009,56(7):2207-2234.
    [16]Jobe Z R,Bernhardt A,Lowe D R.Facies and architectural asymmetry in a conglomerate-rich submarine channel fill,Cerro Toro Formation,Sierra Del Toro,Magallanes basin,Chile[J].Journal of Sedimentary Research,2010,80(12):1085-1108.
    [17]Shanmugam G,Shrivastava S K,Das B.Sandy debrites and tidalites of Pliocene reservoir sands in upper-slope canyon environments,offshore Krishna-Godavari Basin(India):implications[J].Journal of Sedimentary Research,2009,79(9):736-756.
    [18]Babonneau N,Savoye B,Cremer M,et al.Sedimentary architecture in meanders of a submarine channel:detailed study of the present Congo turbidite channel(Zaiango project)[J].Journal of Sedimentary Research,2010,80(10):852-866.
    [19]Mayall M,Jones E,Casey M.Turbidite channel reservoirs—Key elements in facies prediction and effective development[J].Marine and Petroleum Geology,2006,23(8):821-841.
    [20]Deptuck M E,Sylvester Z,Pirmez C,et al.Migration—aggradation history and 3-D seismic geomorphology of submarine channels in the Pleistocene Benin-major Canyon,western Niger Delta slope[J].Marine and Petroleum Geology,2007,24(6/9):406-433.
    [21]Peakall J,Amos K J,Keevil G M,et al.Flow processes and sedimentation in submarine channel bends[J].Marine and Petroleum Geology,2007,24(6/9):470-486.
    [22]Kidd R B,Lucchi R G,Gee M,et al.Sedimentary processes in the Stromboli Canyon and Marsili Basin,SE Tyrrhenian Sea:results from side-scan sonar surveys[J].Geo-Marine Letters,1998,18(2):146-154.
    [23]Wu Shiguo,Takahashi N,Tokuyama H,et al.Geomorphology,sedimentary processes and development of the Zenisu deep-sea channel,northern Philippine Sea[J].Geo-Marine Letters,2005,25(4):230-240.
    [24]Clark J D,Pickering K T.Architectural elements and growth patterns of submarine channels:application to hydrocarbon exploration[J].AAPG Bulletin,1996,80(2):194-220.
    [25]Cronin B T,Akhmetzhanov A M,Mazzini A,et al.Morphology,evolution and fill:implications for sand and mud distribution in filling deep-water canyons and slope channel complexes[J].Sedimentary Geology,2005,179(1-2):71-97.
    [26]Omura A,Ikehara K.Deep-sea sedimentation controlled by sea-level rise during the last deglaciation,an example from the Kumano Trough,Japan[J].Marine Geology,2010,274(1/4):177-186.
    [27]Gonthier E,Faugeres J-C,Viana A,et al.Upper Quaternary deposits on the Sao Tomédeep-sea channel levee system(South Brazilian Basin):major turbidite versus contourite processes[J].Marine Geology,2003,199(1/2):159-180.
    [28]Hickson T A,Lowe D R.Facies architecture of a submarine fan channel-levee complex:the Juniper Ridge Conglomerate,Coalinga,California[J].Sedimentology,2002,49(2):335-362.
    [29]McHargue T,Pyrcz M J,Sullivan M D,et al.Architecture of turbi-dite channel systems on the continental slope:patterns and predictions[J].Marine and Petroleum Geology,2011,28(3):728-743.
    [30]Stow D A V,Mayall M.Deep-water sedimentary systems:new models for the 21st century[J].Marine and Petroleum Geology,2000,17(2):125-135.
    [31]林畅松,刘景彦,蔡世祥,等.莺-琼盆地大型下切谷和海底重力流体系的沉积构成和发育背景[J].科学通报,2001,46(1):69-72.Lin Changsong,Liu Jingyan,Cai Shixiang,et al.Depositional architecture and developing settings of large-scale incised valley and sub-marine gravity flow systems in the Yinggehai and Qiongdongnan basins,South China Sea[J].Chinese Science Bulletin,2001,46(8):690-693.
    [32]苏明,解习农,王振峰,等.南海北部琼东南盆地中央峡谷体系沉积演化[J].石油学报,2013,34(3):467-478.Su Ming,Xie Xinong,Wang Zhenfeng,et al.Sedimentary evolution of the central canyon system in Qiongdongnan Basin,northern South China Sea[J].Acta Petrolei Sinica,2013,34(3):467-478.
    [33]王永凤,王英民,李冬,等.琼东南盆地中央峡谷早上新世沉积物稀土元素特征及物源分析[J].石油天然气学报,2011,13(6):50-54.Wang Yongfeng,Wang Yingmin,Li Dong,et al.Features and source analysis on early Pliocene sedimentary rare earth element(REE)in Central Canyon of Qiongdongnan Basin[J].Journal of Oil and Gas Technology,2011,33(6):50-54.
    [34]Gong Chenglin,Wang Yingmin,Zhu Weilin,et al.The central submarine canyon in the Qiongdongnan Basin,northwestern South China Sea:architecture,sequence stratigraphy,and depositional processes[J].Marine and Petroleum Geology,2011,28(9):1690-1702.
    [35]吴时国,孙启良,吴拓宇,等.琼东南盆地深水区多边形断层的发现及其油气意义[J].石油学报,2009,30(1):22-26.Wu Shiguo,Sun Qiliang,Wu Tuoyu,et al.Polygonal fault and oil-gas accumulation in deep-water area of Qiongdongnan Basin[J].Acta Petrolei Sinica,2009,30(1):22-26.
    [36]朱伟林,米立军,张厚和,等.中国海域含油气盆地图集[M].北京:石油工业出版社,2010:110-111.Zhu Weilin,Mi Lijun,Zhang Houhe,et al.Atlas of oil and gas basins,China Sea[M].Beijing:Petroleum Industry Press,2010:110-111.
    [37]张功成,刘震,米立军,等.珠江口盆地-琼东南盆地深水区古近系沉积演化[J].沉积学报,2009,27(4):632-641.Zhang Gongcheng,Liu Zhen,Mi Lijun,et al.Sedimentary evolution of paleogene series in deepwater area of Zhujiangkou and Qiongdongnan Basin[J].Acta Sedimentologica Sinica,2009,27(4):632-641.
    [38]李思田,路凤香,林畅松,等.中国东部及邻区中、新生代盆地演化及地球动力学背景[M].武汉:中国地质大学出版社,1997:124-131.Li Sitian,Lu Fengxiang,Lin Changsong,et al.The evolution and tectonic setting of Mesozoci and Cenozoic basin in the Eastern China and adjacent areas[M].Wuhan:China University of Geosciences Press,1997:124-131.
    [39]米立军,袁玉松,张功成,等.南海北部深水区地热特征及其成因[J].石油学报,2009,30(1):27-32.Mi Lijun,Yuan Yusong,Zhang Gongcheng,et al.Characteristics and genesis of geothermal field in deep-water area of the northern South China Sea[J].Acta Petrolei Sinica,2009,30(1):27-32.
    [40]李绪宣,刘宝明,赵俊青.琼东南盆地古近纪层序结构、充填样式及生烃潜力[J].中国海上油气,2007,19(4):217-223.Li Xuxuan,Liu Baoming,Zhao Junqing.Paleogene sequence configuration depositional filling pattern and hydrocarbon generation potential in Qiongdongnan basin[J].China Offshore Oil and Gas,2007,19(4):217-223.
    [41]邵磊,李昂,吴国瑄,等.琼东南盆地沉积环境及物源演变特征[J].石油学报,2010,31(4):549-554.Shao Lei,Li Ang,Wu Guoxuan,et al.Evolution of sedimentary environment and provenance in Qiongdongnan Basin in the north South China Sea[J].Acta Petrolei Sinica,2010,31(4):549-554.
    [42]Olariu M I,Aiken C L V,Bhattacharya J P,et al.Interpretation of channelized architecture using three-dimensional photo real models,Pennsylvanian deep-water deposits at Big Rock Quarry,Arkansas[J].Marine and Petroleum Geology,2011,28(6):1157-1170.
    [43]Clark M K,Schoenbohm L M,Royden L H,et al.Surface uplift,tectonics,and erosion of eastern Tibet from large-scale drainage patterns[J].Tectonics,2004,23(1),TC1006,doi:10.1029/2002TC001402.
    [44]Clift P D,Blusztajn J,Nguyen A D.Large-scale drainage capture and surface uplift in eastern Tibet-SW China before 24 Ma inferred from sediments of the Hanoi Basin,Vietnam[J].Geophysical Research Letters,2006,33(19),L19403,doi:10.1029/2006GL027772.
    [45]Yan Y,Carter A,Huang C Y,et al.Constraints on Cenozoic regional drainage evolution of SW China from the provenance of the Jianchuan Basin[J].Geochemistry,Geophysics,Geosystems,2012,13(1):1-12.
    [46]王国芝,王成善,曾允孚,等.滇西高原的隆升与莺歌海盆地的沉积响应[J].沉积学报,2000,18(2):234-240.Wang Guozhi,Wang Chengshan,Zeng Yunfu,et al.The uplift of the western Yun’nan plateau and the sedimentary response of the Yinggehai Basin[J].Acta Sedimentologica Sinica,2000,18(2):234-240.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心