动高压物理在地球与行星科学研究中的应用
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
综述了动高压物理应用于地球和行星科学研究中的一些最新进展,包括地球内部的物质组成与热力学状态,巨行星的物质组成模型,太阳系中的碰撞成坑与吸积相互作用等。依据铁的冲击波数据,结合其他热力学数据,可以得到一条统一的铁的熔化曲线,将动高压与静高压数据完全统一,初步解决了长期困扰高压界的动、静压关于铁的熔化温度存在系统偏差的诘难。外推到ICB处(330 GPa),铁的熔化温度(亦称锚定温度)约为(5 950±100) K。冲击Hugoniot 数据,结合地震学模型可以约束地幔与地核的物质组成。冲击压缩下钙钛矿型(Mg0 9,Fe0 1)SiO3的高压声速测量结果表明,1 770 km深度的不连续面不仅是一个相变界面而且是一个化学成分或矿物学分界面。低温可凝聚气体(H2、He)或冰(H2 O, CH4, CO2, NH3 和N2 )的冲击波数据,及Jeffrey 数等其他数据可以用来构建巨行星(如木星和土星)的物质组成模型。地球深部矿物的冲击温度测量可以用来研究它们的高压熔化行为,据此建立的高压相图可以为控制地幔对流的地幔物质的准静态蠕变提供约束条件。熔融硅酸盐在上地幔压力条件下的冲击压缩数据,可以约束地幔熔岩稳定存在的深度,在此深度地幔熔岩不会因固体围岩提供的浮力而向上运移到地表,从而在此深度形成稳定的低速带。冲击波数据在描写行?
In this paper, the recent achievements of dynamic high-pressure physics applied to Earth and Planetary Sciences are reviewed. This includes the state and composition of Earth's interior, the compositional models of major planets, and processes of impacting, cratering and accreting in the solar system. Shock wave data for iron, combined with other thermodynamic data, yield a uniform melting curve of iron for both dynamic and static high pressure data. The data also indicate that the melting temperature of iron at the inner core boundary (ICB),or the anchor temperature, is about (5 950±100) K. Shock Hugoniot data, in conjuction with seismological models of the Earth, yield constraints on the composition of the Earth’s mantle and core. The sound velocity measurements for silicate such as (Mg_(0.9),Fe_(0.1))SiO_(3 )(perovskite) under shock compression imply that the discontinuity at the depth of 1 770 km is not only a phase transition boundary but also a compositional boundary. Whereas, the shock data and other similar data for low temperature condensable gases (H_2,He) and ices (H_2O, CH_(4), CO_2, NH_3, and N_2), combined with solar elements abundance and Jeffrey's number data, have been used to construct compositional models of the major planets (e. g., Jupiter and Saturn). Shock temperature measurements of the possible minerals in the Earth's interior could be applied to investigate their melting behaviors, with which high pressures phase diagrams could be constructed. This would provide constraints to the quasi-static creep rheology of the mantle that controls convection. Shock compression of molten silicates at upper mantle pressures provides constraints on the depths in the mantle from which melts can reach the surface. Application of shock wave data is critical to describe the energy partitioning upon hypervelocity impacts on planetary surfaces. These data permit calculation of the melt and vapor produced by impactors as a function of impact velocity, and provide a quantitative basis for determining the impact-induced melting of near-surface water ice on Mars. Shock induced devolatilization during the impact processes can also be described using shock wave and other thermodynamic data, and can be used to model the formation of Earth's primitive atmosphere. Furthermore, giant impacts upon the Earth's surface could release abundant gases, such as CO_(2 )and SO_(2 )into the atmosphere that strongly affect the global climate, which appears to have played a major role in the evolution and extinction of species during the Earth's history.
引文
①龚自正.顽火辉石的状态方程、高压声速和高压熔化对下地幔组分和热结构的限定.中国科学院地球化学研究所博士后研究工作报告,1999:7.
    [1] KOPSTYNSKI J L.Equation of state in geophysics and inplanetary physics[A].ELIEZER S,RACCI R A.HighPressure andApplications[M].Amsterdam:NorthHolland,1991:439464.
    [2] NELLIS W J.JumpinJupiter[R].UCRL 52000,1996.
    [3] DZIEWONSKI A M ,ANDERSON D L.Preliminary refer ence earth model[J].PhysEarthPlanetInter,1981,25:297356.
    [4] POIRIER P J.Earth sInterior[M].Cambridge:CambridgeUniversityPress,2000:243.
    [5] VERHOOGEN J.Energetics of theEarth[M].WashingtonD C:NatAcadSci,1980.
    [6] ITO E,KATSURA T.A temperature profile of the mantletransition zone[J].GeophysResLett,1989,16:315322.
    [7] BROWN J M ,SHANKLAND T J.Thermodynamic parame ters in theEarth as determined from seismic profiles[J].GeophysJ R astrSoc,1981,66:579596.
    [8] SPILIOPOULOS S,STACEY F D.TheEarth s thermalprofile:Is there a mid mantle thermal boundary layer[J]?JGeodynamics,1984,1:6177.
    [9] POIRIER J P.Dislocation mediated melting of iron and thetemperature of theEarth s core[J].GeophysJ R astrSoc,1986,85:315328.
    [10] WILLIAMS Q,JEANLOZ R,BASS J, et al.The meltingcurve of iron to250 gigapascals:A constraint on the tempera ture at theEarth s center[J].Science,1987,236:181182.
    [11] ANDERSON O L.TheEarth s core and the phase diagram ofiron[J].PhilTransRoySocLondon,1982,A306:2135.
    [12] BROWN J M,McQUEEN R G.Phase transitions,Gruneisen parameter and elasticity for shocked iron between77GPaand400GPa[J].J GeophysRes,1986,91:74857494.
    [13] STEVENSON D J.Condensed matter physics of planets:Puzzles, progress and predictions[J].MattResSocSympProc,1984,22:357.
    [14] WEIR S T,MITCHELL A C ,NELLIS W J.Metallization offluid molecular hydrogen[J ].PhysRevLett,1996,76:1860.
    [15] NELLIS W J,WEIR S T ,MITCHELL A C.Metallizationand electrical conductivity of hydrogen inJupiter[J].Science,1996,273:936938.
    [16] RINGWOOD A E.Phase transformations and their bearingon the constitution and dynamics of the mantle[J].Geo chemica etCosmochimicaActa,1991,55:2083.
    [17] ANDERSON D L.Composition of the mantle and core[J].AnnRevEarthPlanetSci,1977,5:179.
    [18] DAI Chengda,WANG Daode,LIN Wenzhu, et al.Shockcompression curve ofJilin chondrite and its significances[J].ChinJ SpaceSci,1993,13(3):196(inChinese).
    [19] AHRENS T J.Application of shock wave data toEarth andPlanetaryScience[A].GUPTA Y M.ShockWave inCon densedMatter[C].NewYork:PlenumPress,1986:571588.
    [20] TYBURCZY J A.Shock wave equation of state of serpentineto150GPa:Implication for occurrence of water in theEarth smantle[J].J GeophysRes,1991,96(B11):18011.
    [21] GONG Zizheng,XIE Hongsen,HUO Hui, et al.The soundvelocity of enstatite under high pressures and the possiblecomposition of the lower mantle[J].ChineseScienceBulle tin,1999,44(15):1662(inChinese).
    [22] RIGDEN S M,AHRENS T J,STOLPER E M.Densities of liq uid silicates at high pressure[J].Science,1984,226:1071.
    [23] DUFFY T S,AHRENS T J.Sound velocities at high pres sure and temperature and their geophysical implications[J].J GeophysRes,1992,97:4503.
    [24] CREAGER K C,JORDAN T H.Slab penetration into thelower mantle beneath theMarianas and other island arcs ofthe northwestPacific[J].J GeophysRes,1986,91:3573.
    [25] GONG Z,XIE H,JING F.The temperature sensitivity of e lastic wave velocity of(Mg0.9,Fe0.1)SiO3 perovskite underlower mantle condition and lateral thermal heterogeneity inEarth s lower mantle[J].ChinPhysLett,2000,17(3):218.
    [26] DUFFY T S,AHRENS T J.The temperature sensitivity ofelastic wave velocity at high pressure:New results for molyb denum[J].GeophysResLett,1994,21:473.
    [27] HAGER B H,CLAYTON R W,RICHARDS M A, et al.Lower mantle heterogeneity, dynamic topography, and thegeoid[J].Nature,1985,313:541.
    [28] HOLLAND K G,ARENS T J.The melting of(Mg,Fe)2SiO4 and the core mantle of theEarth[J].Science,1997,275:5306,16231625.
    [29] AKINS J A.DynamicCompression ofMinerals in theMgO FeO SiO2System[D].Pasadena,California:CaliforniaInsti tute ofTechnology,2003.
    [30] AHRENS T J.Constraints on core composition from shockwave data[J].PhilTransRoySocLondon,1982,306:37.
    [31] AHRENS T J.Application of shock compression science toearth and planetary physics[A].SCHMID S C.Proc1995TopicalConference onShockCompression ofCondenseMat ter[C].Elsevier:AmPhysSoc,1996.
    [32] BROWN J M,McQUEEN R G.Melting of iron under coreconditions[J].GeophysResLett,1980,7:533.
    [33] ANDERSON W W,AHRENS T J.An equation of state forliquid iron and implications for theEarth s core[J].J Geo physRes,1994,99:4273.
    [34] FU Shiqin,JIN Xiaogang,WANG Daode, et al.The equa tion of state ofNandanIronMeteorite and its application fortheEarth s core[J].ChinJ Geophys,1993,36(2):158(inChinese).
    [35] DAI Chengda.ShockMeltingBehaviors of anIronMeteoriteandImplications for theThermalStructure of theEarth sCore[D].Mianyang,SichuanProvince:ChineseAcademy ofEngineeringPhysics,2000(inChinese).
    [36] KEELER R N.Electrical conductivity of condensed media athigh pressure[A].Proc48thInternationalSchool ofPhysEnricoFermi,Varenna,Italy[C].NewYork:AcademicPress,1971.
    [37] ANDERSON O L,ISSAK D G,NELSON V E.The high pressure melting temperature of hexagonal close packed irondetermined from thermal physics[J].J PhysChemSolid,2003,64:21252131.
    [38] ANDERSON O L,DUBA A.Experimental melting curve ofiron revisited[J].J GeophysRes,1997,102(B10):2265922669.
    [39] BOEHLER R.Temperatures in theEarth s core from melt ing point measurements of iron at high static pressures[J].Nature,1993,363:534536.
    [40] YOO C S,HOLMES N C,ROSS M, et al.Shock tempera tures and melting of iron atEarth core conditions[J].PhysRevLett,1993,70:39313934.
    [41] MA Y,SOMAYAZULU M,SHEN G, et al.In situX raydiffraction studies of iron toEarth core conditions[J].PhysEarthPlanetInter,2004,143144:455467.
    [42] SHEN G,MAO H K,HEMLEY R J, et al.Melting andcrystal structure of iron at high pressures and temperatures[J].GeophysResLett,1998,25:373376.
    [43] ANDERSON O L,ISAAK D G.Calculated melting curvesfor phases of iron[J].AmMiner,2000,85:376385.
    [44] BOEHLER R,VON BARGEN N,CHOPELAS A.Melting,thermal expansion, and phase transitions of iron at high pres sures[J].J GeophysRes,1990,95:2173121736.
    [45] WILLIAMS Q,KNITTLE E,JEANLOZ R.The high pres sure melting curve of iron:A technical discussion[J].J Geo physRes,1991,96:21712184.
    [46] NGUYEN J H,HOLMES N C.Melting of iron at the physi cal conditions of theEarth s core[J].Nature,2003,427:339342.
    [47] HUANG H J,JING F Q,CAI L C, et al.Gruneisen param eter alongHugoniot and melting temperature of iron:A ther modynamic computational method[J].ChinPhysLett,2005,22(4):836838.
    [48] LUO S,AHRENS T J.Shock induced superheating and melt ing curve of geophysically important minerals[J ].PhysEarthPlanetInter,2004,143144:369386.
    [49] LI X,ZHANG D,LIU F,et al.Shock melting temperature ofinitially porous iron and indication for melting curve of iron athigh pressures[J].ChinPhysLett,2004,21:20192021.
    [50] LANGE M A,HRENS T J.Impact induced dehydration ofserpentine and the evolution of planetary atmospheres[J].JGeophysRes,1982,87:A541.
    [51] TYBURCZY J A,FRISCH B,AHRENS T J.Shock inducedvolatile loss from a carbonaceous chondrite:Implications forplanetary accretion[J].EarthPlanetSciLett,1986,80:201.
    [52] L ANGE M A,AHRENS T J.Shock inducedCO2 loss fromCaCO3:Implications for early planetary atmospheres[J ].EarthPlanetSciLett,1986,77:409.
    [53] GONG Zizheng,XIE Hongsen,JING Fuqian, et al.Thehigh pressure and temperature phase diagram of kaolinite andimplications to geophysics[J].ChinJ HighPressurePhys,1999,12(2):103(inChinese).
    [54] FRENCH B M.Shock metamorphism as a geological process[A].FRENCH B M,SHORT N M.ShockMetamorphismonNaturalMaterials[C].Baltimore:MonoBookCorp,1968:117.
    [55] LI Dahong,YU Quanyou,XIONG Dahe, et al.The shockmetamorphism of quartz sandstone and the crannies distribu tion[J].ChinSciBulletin,1995,40(17):15481551( inChinese).
    [56] O KEEFE J D,AHRENS T J.The interaction of theCreta ceousTertiary extinction bolide with the atmosphere, ocean,and solidEarth[J].GeolSocAm,SpecPaper,1982,190:103.
    [57] STEWART S T,AHRENS T J ,O KEEFE J D.Impact in duced melting of near surface water ice onMars[A].FUR NISH M D,GUPTA Y M,FORBES J W.ShockCompres sion ofCondensedMatter2003[C].NewYork:AmericanInstitute ofPhysics,2004:1484.
    [58] ALVAREZ L W,ALVAREZ W,ASARO F, et al.Extra terrestrial cause for theCretaceous/Tertiary extinction[J].Science,1980,208:1095.
    [59] SIGURDSSON H,BONTE L,TURPIN M, et al.Geochem ical constraints on source region ofCretaceous/Tertiary im pact glasses[J].Nature,1991,353:839842.
    [60] SWISHER C C Ⅲ,GRAJALES NISHIMURA J M,MON TANATI A, et al.Coeval40Ar/39Ar ages of65.0 millionyears ago fromChicxulub crater melt rock andCretaceousTertiaty boundary tektites[J].Science,1992,257:954.
    [61] CHEN G,TYBURCZY J A,AHRENS T J.Shock induceddevolatization of calcium sulfate and implications forK T ex tinctions[J].EarthPlanetSciLett,1994,128:615.
    [62] SIGURDSSON H.Assessment of the atmospheric impact ofvolcanic eruptions[J].GeolSocAm,SpecPap,1990,247:99110.
    [63] O KEEFE J D,AHRENS T J.Impact inducedCO2 by theCretaceous/Tertiary bolide and the resultant bearing of theEarth[J].Nature,1989,338:247.
    [18] 戴诚达,王道德,林文祝,等.吉林陨石冲击压缩线及其意义[J].空间科学学报,1993,13(3):196.
    [21] 龚自正,谢鸿森,霍卉,等.顽火辉石的高压声速和下地幔的可能组成[J].科学通报,1999,44(15):1662.
    [34] 傅世勤,金孝刚,王道德,等.南丹铁陨石状态方程用于地核研究[J].地球物理学报,1993,36(2):158.
    [35] 戴诚达.铁陨石的冲击熔化特性与地核的热结构[D].绵阳:中国工程物理研究院,1999.
    [53] 龚自正,谢鸿森,经福谦,等.高岭石的高温高压相图及地学意义[J].高压物理学报,1999,12(2):103.
    [55] 李大红,余泉友,熊大和,等.石英砂岩冲击变质与裂隙分布[J].科学通报,1995,40(17):15481551.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心