天然气水合物和游离气饱和度估算的影响因素
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
讨论了不同水合物胶结类型的流体饱和多孔隙固体中地震波的衰减情况,分析了估算天然气水合物和游离气饱和度影响因素.结果表明,地层孔隙度、纵波速度模型和弹性模量的计算方法是影响反演水合物和游离气饱和度的关键因素.含水合物地层的吸收与水合物胶结类型密切相关,当水合物远离固体颗粒,像流体一样充填在孔隙时,品质因子出现负异常,而当水合物胶结固体颗粒影响骨架的弹性性质,其品质因子出现正异常.根据布莱克海台地区164航次995井的测井资料,分别应用低频和高频速度模型估算了水合物和游离气饱和度.由低频速度模型得到的水合物饱和度(占孔隙空间的)10%~20%,游离气饱和度(占孔隙空间的)0.5%~1%;而由高频速度模型得到的水合物饱和度(占孔隙空间的)5%~10%,游离气饱和度(占孔隙空间的)1%~2%.
Attenuations of different types of gas hydrate cementation in fluid-saturated porous solids are discussed. The factors affecting estimation of gas hydrate and free gas saturation are analyzed. It is suggested that porosity of sediment, the P wave velocity model and methods of calculating elastic modulus are key factors in the estimation of gas hydrate and free gas saturations. Attenuation of gas hydrate-bearing sediment is closely related with the cementation types of gas hydrate. Negative anomalies of quality factors indicate that gas hydrate deposits away from grain as part of fluid. Positive anomalies of the quality factors indicate that gas hydrate contacts with solid and changes the elastic modulus of matrix. Low frequency velocity and high frequency velocity models are used to estimate gas hydrate and free gas saturation in the Blake Ridge area according to the well log data of the hole 995 in ODP leg 164. The gas hydrate saturation obtained by low frequency velocity is 10%~20% of the pore space and free gas saturation is 0.5%~1% of the pore space. The gas hydrate saturation obtained by high frequency velocity is 5%~10% of the pore space and free gas saturation is 1%~2% of the pore space.
引文
[1]BiotMA.Theoryofpropagationofelasticwavesinafluid saturatedporoussolid(Ⅰ):low frequencyranges.J.Acoust.Soc.Am.,1956,28(2):168~178
    [2]GeertsmaJ,SmithDC.Someaspectsofelasticwavepropagationin fluidsaturatedporoussolids.Geophysics,1961,26(2):169~181
    [3]DomenicoSN.Elasticpropertiesofunconsolidatedporoussand reservoirs.Geophysics,1977,42(7):1339~1368
    [4]KvenvoldenKA.Gashydrate Geologicalperspectiveandglobal change.Rev.Geophys.,1993,31(2):173~187
    [5]马在田,宋海斌,孙建国.海洋天然气水合物的地球物理探测高新技术.地球物理学进展,2000,15(3):1~6MaZT,SongHB,SunJG.Geophysicalprospectinghigh technologiesofmarinegashydrates.ProgressinGeophysics(in Chinese),2000,15(3):1~6
    [6]TinivellaU.Amethodforestimatinggashydrateandfreegas concentrationsinmarinesediments.Boll.Geofis.Teor.Applic.,1999,40(1):19~30
    [7]HyndmanR,SpenceGA.Seismicstudyofmethanehydratemarine bottomsimulatingreflectors.J.Geophys.Res.,1992,97(B5):6683~6698
    [8]KatzmanR,HolbrookW,PaullC.Combinedverticalincidenceand wide angleseismicstudyofagashydratezone,BlakeRidge.J.Geophys.Res.,1994,99(B9):17975~17995
    [9]MinshullTA,SinghSC,WestbrookGK.Seismicvelocitystructure atagashydratereflector,offshorewesternColumbia,fromfull waveforminversion.J.Geophys.Res.,1994,99(B3):4715~4734
    [10]AndreassenK,HartPE,McKayM.Amplitudeversusoffset modelingofthebottomsimulatingreflectionassociatedwithsubmarine gashydrate.MarineGeology,1997,137(12):25~40
    [11]CarcioneJM,TinivellaU.Bottom simulatingreflectors:seismic velocitiesandAVObasedonlaboratory,wellandseismicdata.Geophys.Prosp.,2000,49(3):523~539
    [12]CadoretT,MarionD,ZinsznerB.Influenceoffrequencyandfluid distributiononelasticwavevelocitiesinpartiallysaturated limestones.J.Geophys.Res.,1995,100(B6):9789~9803
    [13]EckerC,DvorkinJ,NurA.Sedimentswithgashydrate:Internal structurefromseismicAVO.Geophysics,1998,63(5):1659~1669
    [14]DvorkinJ,NurA.Elasticityofhigh porositysandstones:Theoryfor twoNorthSeadatasets.Geophysics,1996,61(5):1363~1370
    [15]DvorkinJ,NurA.Time averageequationrevisited.Geophysics,1998,63(2):460~464
    [16]宋海斌,MatsubayashiOsamu,杨胜雄等.含天然气水合物沉积物的岩石物性模型与似海底反射层的AVA特征.地球物理学报,2002,45(4):545~556SongHB,MatsubayashiOsamu,YangSX,etal.Physicalproperty modelsofgashydratebearingsedimentsandAVAcharacterofbottom simulatingreflector.ChineseJ.Geophys.(inChinese),2002,45(4):569~579
    [17]SloanED.ClathrateHydratesofNaturalGas.MarcelDekker,New York,641
    [18]MavkoG,NurA.Waveattenuationinpartiallysaturatedrocks.Geophysics,1979,44(2):161~178
    [19]MatsumotoR,BorowskiWS.Gashydrateestimatesfromnewly determinedoxygenisotopicfractionation(“GH IW”)and18O anomaliesoftheinterstitialwaters:Leg164,BlakeRidge.ProceedingsoftheOceanDrillingProgram,Sci.Results,College Station,TX(OceanDrillingProgram),2000,164,59~66
    [20]CollettTS,LaddJ.Detectionofgashydratewithdownholelogsand assessmentofgashydrateconcentrations(saturations)andgas volumesontheBlakeRidgewithelectricalresistivitylogdata.Ocean DrillingProgram,ScientificResult,theOceanDrillingProgram,2000,164,179~191
    [21]PaullCK,MatsumotoR,WallacePJ,etal.Proceedingsofthe OceanDrillingProgram,InitialReport,CollegeStation,TX(Ocean DrillingProgram),1996,164,1~318
    [22]YuanT,HyndmanRD,SpenceGD,etal.Seismicvelocity increaseanddeep seahydrateconcentrationaboveabottom simulatingreflectoronthenorthernCascadianslope.J.Geophys.Res.,1996,101(B6):13655~13671
    [23]Gu啨rinG,GoldbergD,MeltserA.Characterizationofinsituelastic propertiesofgashydrate bearingsedimentsontheBlakeRidge.J.Geophys.Res.,1999,104(B8):17781~17795
    [24]LuS,McMechanGA.Estimationofgashydrateandfreegas saturation,concentrationanddistributionfromseismicdata.Geophysics,2002,67(2):582~593
    [25]LeeMW,HutchinsonDR,AgenaWF,etal.Seismiccharacterof gashydratesonthesoutheasternU.S.continentalmargin.Marine GeophysicalResearch,1994,16(1):163~184
    [26]DickensGR,PaullC,WallaceP,etal.Directmeasurementofin situmethanequantitiesinalargegas hydratereservoir.Nature,1997,385(6615):427~429
    [27]EckerC,DvorkinJ,NurA.Estimatingtheamountofgashydrate andfreegasfrommarineseismicdata.Geophysics,2000,65(2):565~573
    [28]HolbrookWS,HoskinsH,WoodWT,etal.Methanehydrateand freegasontheBlakeRidgefromverticalseismicprofiling.Science,1996,273(5283):1840~1843

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心