波动方程法地震波正演数值模拟研究综述
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
波动方程法地震波正演数值模拟主要包括有限差分法、连续有限元法,谱方法以及新兴的间断有限元法。本文总结了这些方法近年来的新进展,探究了各方法在应对起伏地表等复杂构造和提高模拟效率等方面出现的新技术,并对该领域的发展方向和趋势进行了分析和展望。
The wave equation methods of the seismic forward numerical simulation include finite- difference method, continuous finite-element method, and spectral method and newly presented discontinuous Galerkin finiteelement method. The paper summarized the progresses made on these methods in recent years, researched the new techniques to deal with complex structure and improve efficiency of simulation, and analyzed the direction of the development of the technique in this domain.
引文
[1]李信富,李小凡,张美根.地震波数值模拟方法研究综述[J].防灾减灾工程学报,2007,27(2):241-248.
    [2]朱多林,白超英.基于波动方程理论的地震波场数值模拟方法综述[J].地球物理学进展,2011,26(5):1588-1599.
    [3]王雪秋,孙建国,张文志.复杂地表地质条件下地震波数值模拟综述[J].吉林大学学报(地球科学版),2005,35(增刊):12-18.
    [4]张华,李振春,韩文功.起伏地表条件下地震波数值模拟方法综述[J].勘探地球物理进展,2007,30(5):334-339.
    [5]Altermen Z S,Loewentha D.Seismic wave in a quarter and three quarter plane[J].Geophys.J.Roy Astr.Soc.,1970,20(1):101-126.
    [6]J.F.克莱鲍特.地震成像理论及方法[M].北京:石油工业出版社,1991.
    [7]冯英杰,杨长春,吴萍.地震波有限差分模拟综述[J].地球物理学进展,2007,22(2):487-491.
    [8]王雪秋,孙建国.地震波有限差分数值模拟框架下的起伏地表处理方法综述[J].地球物理学进展,2008,23(1):40-48.
    [9]董良国,郭晓玲,吴晓丰等.起伏地表弹性波传播有限差分法数值模拟[J].天然气工业,2007,27(10):38-41.
    [10]王祥春,刘学伟.起伏地表二维声波方程地震波场模拟与分析[J].石油地球物理勘探,2007,42(3):268-276.
    [11]X.C.Wang,X.W.Liu.3-D acoustic wave equation forward modeling with topography[J].Applied Geophysics,2007,4(1):8-15
    [12]孙成禹,李胜军,倪长宽等.波动方程变网格步长有限差分数值模拟[J].石油物探,2008,47(2):123-127.
    [13]黄超,董良国.可变网格与局部时间步长的高阶差分地震波数值模拟[J].地球物理学报,2009,52(1):176-186.
    [14]黄超,董良国.可变网格与局部时间步长的交错网格高阶差分弹性波模拟[J].地球物理学报,2009,52(1):2870-2878.
    [15]Michéa D,Komatitsch D.Accelerating a 3D finite-difference wave propagation code using GPU graphics cards[J].Geophys.J.Int.,2010,182(1):389-402
    [16]龙桂华,赵宇波,李小凡等.三维交错网格有限差分地震波模拟的GPU集群实现[J].地球物理学进展,2011,26(6):1938-1949.
    [17]廉西猛.基于GPU集群的大规模三维有限差分正演模拟并行策略[J].已投出.
    [18]邓玉琼,张之立.弹性波的三维有限元模拟[J].地球物理学报,1990,33(1):41-53
    [19]杨顶辉.双相各向异性介质中弹性波方程的有限元解法及波场模拟[J].地球物理学报,2002,45(4):575-583.
    [20]张美根,王妙月,李小凡等.各向异性弹性波场的有限元数值模拟[J].地球物理学进展,2002,17(3):384-389.
    [21]薛东川,王尚旭,焦淑静.起伏地表复杂介质波动方程有限元数值模拟方法[J].地球物理学进展,2007,22(2):522-529.
    [22]王月英,孙成禹.弹性波动方程数值解的有限元并行算法模拟研究[J].中国石油大学学报(自然科学版),2006,30(5):27-30.
    [23]D.Komatitsch,G.Erebacher,D.Goddéke,D.Michéa.High-order finite-element seismic wave propagation modeling with MPI on a larger GPU cluster[J].Journal of Computational Physics,2010,229:7692-7714.
    [24]刘有山,滕吉文,刘少林等.稀疏存储的显式有限元三角网格地震波数值模拟及其PML吸收边界条件[J].地球物理学报,2013,56(9):3085-3099.
    [25]李信富,李小凡,张美根.伪谱法弹性波场数值模拟中的边界条件[J].地球物理学进展,2007,22(5):1375-1379.
    [26]李展辉,黄清华,王彦宾.三维错格时域伪谱法在频散介质井中雷达模拟中的应用[J].地球物理学报,2009,52(7):1915-1922.
    [27]谢桂生,刘洪,赵连功.伪谱法地震波正演模拟的多线程并行计算[J].地球物理学进展,2005,20(1):17-23.
    [28]D.Komatitsch,D.Goddéke,G.Erebacher,et al.Modeling the propagation of elastic waves using spectral elements on a cluster of 192 GPUs[J].Computer Science-Research and Development,2010,25(1-1):75-82.
    [29]汪文帅,李小凡,鲁明文等.基于多辛结构谱元法的保结构地震波场模拟[J].地球物理学报,2012,55(10):3427-3439.
    [30]E.D.Mercerat,J.P.Vilotte,F.J.Sabcgez-Sesma.Triangular spectral element simulation of two-dimensional elastic wave propagation using unstructured trigular grids[J].Geophys.J.Int.,2006,166:679-698.
    [31]R.Pasquetti,F.Rapetti,.Spectral element methods on unstructured meshes:comparison and recent advances[J].J.Sci.Comput.,2006,27:377-387.
    [32]汪文帅,张怀,李小凡.间断的Galerkin方法在地震波场数值模拟中的应用概述[J].地球物理学进展,2013,28(1):171-179.
    [33]M.Kǎser,M.Dumbser.An arbitrary high order discontinuous Galerkin method for elastic waves on unstructured meshes I:The two-dimensional isotropic case with external source terms[J].Geophys.J,Int.,2006,166:855-877.
    [34]M.Kǎser,M.Dumbser.An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes-II.the three-dimensional isotropic case[J].Geophys.J,Int.,2006,167:319-336.
    [35]M.K?ser,M.Dumbser,J.Puente,H.Igel.An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes-III.viscoelastic attenuation[J].Geophys.J,Int.,2007,168:224-242.
    [36]J.Puente,M.Kǎser,M.Dumbser,H.Igel.An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes-IV.anisotropy[J].Geophys.J,Int.,2007,169:1210-1228.
    [37]M.Kǎser,V.Hermann,J.Puente.Quantitative accuracy analysis of discontinuous Galerkin method for seismic wave propagation[J].Geophys.J,Int.,2008,173:990-999.
    [38]M.Kǎser,C.E.Castro,J.Puente,M.Dumbser.Improved modeling of seismic waves using the discontinuous Galerkin scheme on different mesh types[J].Geophysical Research Abstracts,10,EGU2008-A-08371,2008,EGU General Assembly 2008.
    [39]C.E.Castro,M.Kǎser,G.B.Brietze.Seismic waves in heterogeneous material:subcell resolution of the discontinuous Galerkin method[J].Geophys.J.Int.,2010,182:250-264.
    [40]J.de la Puente,M.Dumbser,M.Kǎser,H.Igel.Discontinuous Galerkin methods for wave propagation in poroelasticmedia[J].Geophysics,2008,73(5):77-97.
    [41]J.de la Puente,J-P.Ampuero,M.Kǎser.Dynamic rupture modeling on unstructured meshes using a discontinuous Galerkin method[J].J.Geophys.Res.,2009,114,B10302.
    [42]C.Pelties,J.de la Puente,J-P.Ampuero,G.B.Brietze,et al.Three-dimensional dynamic rupture simulation with a high order discontinuous Galerkin method on unstructured tetrahedral meshes[J].J.Geophys.Res.,2012,117 B02309.
    [43]S.Delcourte,L.Fezoui,N.Glinsky-Olivier.A high-order discontinuous Galerkin method for the seismic wave propagation[J].ESAIM:Proceedings,2009,27:70-89.
    [44]V.Etienne,E.Chaljub,J.Virieux,N.Glinsky.An hp-adaptive discontinuous Galerkin finite-element method for 3-D elastic wave modelling[J].Geophys.J.Int.,2010,183:941-962.
    [45]C.L.Petrovitch,L.J.Pyrak-Nolte,M.V.De Hoop,.Modeling of seismic wave scattering from rough fracture surface[J].Proceedings of the Project Review,Geo-Mathematical Imaging Group,2011,1:243-252.
    [46]廉西猛,张睿璇.地震波动方程的局部间断有限元方法数值模拟[J].地球物理学报,2013,56(10):3507-3513.
    [47]薛昭,董良国,李晓波等.起伏地表弹性波传播的间断Galerkin有限元数值模拟方法[J].地球物理学报,57(4):1209-1223.
    [48]M.Dumbser,M.Kǎser,E.F.Toro.An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes V:local time stepping and p-adaptivity[J].Geophys.J.Int.,2007,171(3):695-717.
    [49]S.Minisini,E.Zhebel,A.Kononov,W.A.Mulder.Local time stepping with the discontinuous Galerkin method for wave propagation in 3D heterogeneous media[J].Geophysics,2013,78(3):67-77.
    [50]Wu D W,Chen P,Wang L Q.Accelerating the discontinuous Galerkin method for seismic wave propagation simulations using multiple GPUs with CUDA and MPI[J].Earthq.Sci.,2013,26(6):377-393.

版权所有:© 2021 中国地质图书馆 中国地质调查局地学文献中心