神秘的109.4°——共轭变形带的夹角
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
塑性力学的滑移线理论、Watterson零伸长度理论和最大有效力矩准则均获得共轭变形带的夹角为109.4°。该值与黄金规则相容,然而,滑移线理论的预测值面对伸长方向,与实际不符。零伸长度理论所预测的109.4°,不能解释实际观察到的平面共轭剪切带。根据最大有效力矩准则理论,预测韧性变形域共轭变形带面对主压应力方向或瞬时最小伸长度方向的夹角为109.4°。迄今获得的全部野外观测值和岩石力学实验结果均位于该预测值的±20°范围内,证明最大有效力矩准则的有效性。最大有效力矩准则可解释或求解:1)折劈理的形成,2)大型低角度正断层和高角度逆冲断层的形成,3)地震反射剖面中的鳄鱼嘴构造,4)变质结晶基底的基本构造型式——菱网状韧性剪切带,5)拆离褶皱的形成,6)古主应力和相关的运动学涡度
The angle 109.4° of conjugate deformation zones was given by the slip-line theory of plasticity, the zero-extension theory proposed by Waterston (1999) and the theory of the maximum effective moment suggested by Zheng et al. (2004). The value was compatible with the golden rule, however, that value predicted by the slip-line theory was faced to the extensional direction and not compatible with observations available from nature and experiments. The value predicted by the zero-extension theory for unaxial shortening was a pair of conical surfaces rather than conjugate planar deformation belts as seen in nature. According to the theory of the maximum effective moment demonstrates, the value appeared in the σ_ 1 direction and the range ±20° covered the whole observations available. Its major implications were as follows. 1) It could be used to explain the obtuse angle in the contraction direction of conjugate kink-bands and extensional crenulation cleavages, 2) to understand formation of low-angle normal faults and high-angle reverse faults, 3) to explain some crocodile structures in seismic profiles, 4) to reveal some lozenge ductile shear zones in basement terranes, 5) to explain creation of the detachment folds in foreland basins, and 6) it could be used to determine the stress state when the related deformation features formed and provided a new approach to determine the W_k of the related ductile shear zone.
引文
郑亚东.2005.结构面力学性质的定量鉴定.地质力学学报,11(3):197—203.Zheng Yadong.2005.Quantitative characterization of mechanical properties of deformational zones.Journal ofGeomechanics,11(3):197—203.
    郑亚东,王涛,王新社.2005.新世纪构造地质学与力学的新理论——最大有效力矩准则.自然科学进展,15(2):142—148.Zheng Yadong,Wang Tao and Wang Xinshe.2005.The maximum effective moment criterion——A new theory in geologyand mechanics in the21st Century.Prog.Nat.Sci.,15(2):142—148.
    Anderson E M.1951.The Dynamics of Faulting(2Ed.).Edingburgh:Oliver and Boyd.206.
    Becker G F.1893.Finite homogeneous strain,flow and rupture of rocks.Geol.Soc.Amer.Bull.,4:13—19.
    Boullier A Mand Robert F.1992.Palaeoseismic events recorded in Archaean gold-quartz vein networks,Val d Or,Abitibi,Quebec,Canada.Jour.Struct.Geol.,14:161—179.
    Faill R T.1973.Kink band folding,Valley and Ridge Province,Pennsylvania.Geol.Soc.Amer.Bull.,84:1289—1314.
    Gossler J,Kind R,Sobolev S V,Kampf H,Wylegalla K and Striller M.1999.Major crustal features between the HarzMountains and the Baltic Shield derived from receiver functions.Tectonophysics,314:321—333.
    Hill R.1950.The Mathematical Theory of Plasticity.Oxford:Clarendon Press.356.
    Lin S,van Staal C R and Dube B.1994.Promontory-promontory collision in the Canadian Appalachians.Geology,22:897—900.
    Marshak S,Alkmim F F,Whittington Aand Pedrosa-Soares AC.2006.Extensional collapse in the Neoproterozoic Aracuai oro-gen,eastern Brazil:a setting for reactivation of asymmetric crenulation cleavage.Jour.Struct.Geol.,28:129—147.
    Meisner R and Roston T.1989.The three-dimensional structure of the oberptalz:an alternative interpretation of DEKORP-KTB data.Tectonophysics,157:1—11.
    Nadai A.1950.Theory of Flow and Fracture of Solids,Vol.1.New York:McGraw—Hill.572.
    Neves S P,da Silva J MR and Mariano G.2005.Oblique lineations in orthogneisses and supracrustal rocks:vertical partitio-ning of strain in a hot crust(eastern Borborema Province,NE Brazil).Jour.Struct.Geol.,27:1513—1527.
    Park R G.1981.Shear-zone deformation and bulk strain in granite-greenstone terrain of the western Superior Province,Cana-da.Precambrian Res.,14:31—47.
    Paterson MS and Weiss LE.1966.Experimental deformation and folding in phyllite.Geol.Soc.Amer.Bull.,77:343—374.
    Platt J P.1979.Extensional crenulation cleavage.Jour.Struct.Geol.,1:95.
    Price N J and Cosgrove J W.1990.Analysis of Geological Structures.Cambridge:Cambridge University Press.502.
    Ramsay J G.1980.Shear zone geometry:a review.Jour.Struct.Geol.,2:83—99.
    Ramsay J G and Huber MI.1987.The Techniques of Modern Structural Geology Fractures,Volume2:Folds and Fractures.London:Academic Press.307.
    Sibson R H,Robert F and Poulsen KH.1988.High-angle reverse faults,fluid-pressure cycling,and mesothermal gold-quartzdeposits.Geology,16:551—554.
    Ujiie K,Malman A J and Sanchez-Gomez M.2004.Origin of deformation bands in argillaceous sediments at the toe of theNankai accretionary prism,southwest Japan.Jour.Struct.Geol.,26:221—231.
    Vandenberg L C and Lister G S.1996.Structural analysis of basement tectonites from the Aegean metamorphic core complexof Ios,Cyclades,Greece.Jour.Struct.Geol.,18:1437—1454.
    Watterson J.1999.The future of failure:stress or strain?Jour.Struct.Geol.,21:939—948.
    Weijermars R.1998.Taylor-mill analogues for patterns of flow and deformation in rocks.Jour.Struct.Geol.,20:77—92.
    Wernicke B.1981.Low-angle normal faults in the Basin and Range Province:nappe tectonics in an extending orogen.Na-ture,291:645—648.
    Zhang Z F and Eckert J.2005.Unified tensile fracture criterion.Physical ReviewLetters,PRL94(094301):1—4.
    Zheng Y,Wang T,Ma M and Davis G A.2004.Maximum effective moment criterion and the origin of low-angle normalfaults.Jour.Struct.Geol.,26:271—285.
    Zheng Y D,Wang Tand Wang X S.2006.The maximum effective moment criterion(MEMC)and its implications in structural geology.Acta Geologica Sinica(English Ed.),80(1):70—78.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心