多孔介质的流体机制模型及其频散机理
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
当声波或弹性波在流体饱和多孔介质中传播时,孔隙或裂缝受其影响发生闭合或张开,流体产生相对运动,致使多孔隙岩石的宏观物理性质发生变化,从而引起弹性波传播速度的改变、能量的耗散和振幅的衰减。基于双相介质理论提出的Gassmann方程、Biot理论、喷流机制、BISQ模型和斑块饱和模型等岩石物理机制模型,以不同的流体流动机制描述了多孔介质中弹性波传播的动态耦合机理、耦合程度和耦合结果。许多岩石物理机制模型都试图模拟和解释岩石中速度频散和衰减的起因。根据现有各种机制模型的高限、低限频率和特征(弛豫)频率,可以粗略地计算出衰减和频散的影响。随着地震岩石物理学研究的深入与发展,人们对弹性波速度频散和衰减与岩石物理性质及本征条件之间关系的认识必将不断深化。
Pores or cracks in a fluid saturated porous medium are subject to close or open when acoustic waves or elastic waves propagate through it.The resulted relative fluid movement gives rise to the changes of macroscopic physical properties of the porous medium in velocity,energy dissipation,and amplitude attenuation.Based on two-phase medium theory,people have already proposed several rock physical mechanism models such as Gassmann’s equation,Biot’s theory,squirt or local flow mechanism,BISQ model,and patchy saturation model.These models define the dynamic coupling mechanism,coupling degree and coupling results in different fluid flow mechanism for the elastic wave propagation in the porous medium.Many of the rock physical mechanism models try to simulate and explain the cause of velocity dissipation and amplitude attenuation in rocks.The effects of the dissipation and attenuation can be estimated roughly according to the high frequency limit,low frequency limit,and characteristic frequency (relaxation frequency) defined by these mechanism models.Along with thorough research and development of seismic rock physics,the understanding to the relations between elastic wave velocity dissipation and amplitude attenuation with the rock physical property as well as the inherent condition will certainly deepen unceasingly.
引文
1 Wang Z J,Nur A M.Seismic and acoustic velocities inreservoir rocks,Vol.2:Theoretical and model studies[M].[s.l.]:SEG Geophysics Reprint Series,1992.1~450
    2 Gassmann F.Elastic waves through a packing ofspheres[J].Geophysics,1951,16(4):673~682
    3 Wang Z.Fundamentals of seismic rock physics[J].Geophysics,2001,66(2):398~412
    4 Hilterman F J.Seismic amplitude interpretation[M].[s.l.]:EAGE Distinguished Instructor Series,2001.1~236
    5 Murphy WF,Schwartz L M,Hornby B.Interpretationphysics ofvPandvSin sedi mentary rocks[A].In:[s.n.].SPWLA32 Annual Logging Symposium[C].Tex-as:[s.l.],1991.FF1~FF24
    6 Brown R,Korringa J.On the dependence of the elasticproperties of a porous rock on the compressibility ofthe pore fluid[J].Geophysics,1975,40(3):608~616
    7 Berryman J G,Milton G W.Exact results for general-ized Gassmann s equation in composite porous mediawith two constituents[J].Geophysics,1991,56(12):1 950~1 960
    8 Biot M A.Theory of propagation of elastic waves in afluid saturated porous solid,I:Low frequency range,and II:Higher-frequency range[J].Journal of the A-coustical Society of America,1956,28(2):168~196
    9 Geerst ma J,Smith D C.Some aspects of elastic wavepropagationin fluid-saturated porous solids[J].Geo-physics,1961,26(2):169~181
    10 Biot M A,Willis D G.The elastic coefficients of thetheory of consolidation[J].Journal of Applied Me-chanics,1957,24(3):594~601
    11 Mavko G,Jizba D.Esti mating grain-scale fluid defectson velocity dispersion in rocks[J].Geophysics,1991,56(7):1 940~1 949
    12 Dvorkin J,Mavko G,Nur A.Squirt flowin fully satu-rated rocks[J].Geophysics,1995,60(1):97~107
    13 Mavko G,Mukerji T.Pore fluid effects on seismic ve-locity in anisotropic rocks[J].Geophysics,1994,59(2):233~244
    14 Dvorkin J,Nur A.Dynamic poroelasticity:A unifiedmodel with the squirt and the Biot mechanisms[J].Geophysics,1993,58(4):524~533
    15 Dvorkin J,Nolen-Hoeksema R,Nur A.The squirt-flowmechanisms:Macroscopic description[J].Geophysics,1994,59(3):428~438
    16 Hill R.Elastic properties of reinforces solids:Sometheoretical principles[J].Journal of the Mechanics andPhysics of Solids,1963,11(4):357~372
    17 White J E.Computed seismic speeds and attenuationinrocks with partial gas saturation[J].Geophysics,1975,40(2):224~232
    18 Wang Z,Nur A.Dispersion analysis of acoustic veloci-ties in rocks[J].Journal of the Acoustical Society ofAmerica,1990,87(6):2 384~2 395
    19 Mavko G,Mukerji T,Dvorkin J.The rock physicshandbook:Tools for seismic analysis in porous media[M].London:Cambridge University Press,1998.1~329
    20 Kuster G T,Toks z M N.Velocity and attenuation ofseismic waves in two-phase media,Part 1&Part 2[J].Geophysics,1974,39(5):587~618
    21 Berryman J G.Single-scattering approxi mation for co-efficients in Biot s equation of poroelasticity[J].TheJournal of the Acoustical Society of America,1992,91(2):551~571
    22 Zi mmerman R W.The elastic moduli of a solid withspherical pores:Newself-consistent method[J].Inter-national Journal of Rock Mechanics and Mining Sci-ences,1984,21(6):339~343
    23 Hudson J A.Wave speeds and attenuation of elasticwaves in material containing cracks[J].GeophysicalJournal of the Royal Astronomical Society,1981,64(1):133~150
    24 Backus G E.Long-wave elastic anisotropy produced byhorizontal layering[J].Journal of Geophysical Re-search,1962,67(11):4 427~4 440
    25 Wyllie M R J,Gregory A R,Gardner L W.Elasticwave velocities in heterogeneous and porous media[J].Geophysics,1956,21(1):41~70
    26 Wang Z.Seismic anisotropy in sedi mentary rocks,Part1:Asingle-pluglaboratory method;Part 2:Laboratorydata[J].Geophysics,2002,67(5):1 415~1 440
    27 King MS,Marsden J R.Velocity dispersion between ul-trasonic and seismic frequencies in brine-saturated reser-voir sandstones[J].Geophysics,2002,67(1):254~258
    28 King M S.Rock-physics developments in seismic ex-ploration:A personal 50-year perspective[J].Geo-physics,2005,70(6):3ND~8ND

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心