青藏铁路沿线构造活动性评价和工程稳定性区划
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
构造活动强度α(1)和地壳稳定程度β(1)是构造活动性评价和工程稳定性区划的重要参数,α=1-β。对青藏铁路沿线任一单元i,以断层运动速率(vi)、地震震级(Mi)、温泉温度(Ti)和构造应变(εi)综合刻画构造活动强度(αi),αi=(vi/vmax+Mi/Mmax+Ti/Tmax+εi/εmax)/αmax。根据各单元构造活动强度值(αi),应用克里格等值线绘制软件,编制构造活动强度等值线图,为青藏铁路沿线构造活动性评价和工程稳定性区划提供定量判据。α0.40的构造活动区可能孕育Ms6~7级地震,对应于不稳定区;α0.70的强烈构造活动区可能孕育8级左右强烈地震,对应于极不稳定区。区划结果表明,青藏铁路沿线发育昆仑山南、可可西里、通天河、唐古拉山、错那湖、当雄、羊八井7个不稳定区,其中包括西大滩、谷露盆西、羊八井3个极不稳定区。
The strength of tectonic activity α(1)and crustal stability β(1)are two important factors for the assessment of tectonic activity and division of engineering stability, as well as selection of engineering sites, and α=1-β. For any unit i along the Golmud-Lhasa Railway, the strength of present tectonic activity (αi) may be evaluated by four factors, namely, the slip rate of active fault (vi), magnitude of earthquake (Mi), temperature of hot spring (Ti) and tectonic strain (εi), and αi=(vi/vmax+Mi/Mmax+Ti/Tmax +εi/εmax)/αmax. According to the values of αi for various units, a strength contour map of tectonic activity was compiled automatically by using the software of drawing Kriging contours, providing the quantitative criteria for assessment of the tectonic activity and division of engineering stability along the Golmud-Lhasa Railway. It has been demonstrated that the tectonically active region with α0.40 may produce Ms6-7 earthquakes, corresponding to an unstable region and that the tectonically very active region with α0.70 may produce Ms8 earthquakes, corresponding to an very unstable region. Seven unstable regions, i.e. the South Kunlun Mountains, Hoh Xil, Tongtian River plain, Tanggula Mountains, Co Nag Lake, Damxung and Yangbajain, and three very unstable regions, i.e. Xidatan, west of Gulu and Yangbajain, are identified along the Golmud-Lhasa section of the Qinghai-Tibet Railway.
引文
[1]M atsuda T,O ta Y,Ando M,et al.Fault m echanism and recur-rence tim e of m ajor earthquakes in southern Kanto district,Japan,as deduced from coastal terrace data[J].G eol.Soc.Am erica Bull.,1978,89:1610-1618.
    [2]丁国瑜.新构造变动图组[A].见:马杏垣主编.中国岩石圈动力学地图集[M].北京:中国地图出版社,1989.16-22.
    [3]Lin Aim ing,Fu Bihong,G uo Jianm ing,et al.C o-seism ic strike-slip and rupture length produced by the2001M s8.1C entral Kunlun Earthquake[J].Science,2002,296:2015-2017.
    [4]胡聿贤.地震工程学[M].北京:地震出版社,1988.
    [5]胡聿贤.地震危险性分析中的综合概率法[M].北京:地震出版社,1990.
    [6]马宗晋.活动构造基础与工程地震[M].北京:地震出版社,1992.180-182.
    [7]谷德振.地质构造与工程地质[J].科学通报,1963,8(10):18-23.
    [8]谷德振.岩体工程地质力学基础[M].北京:科学出版社,1979.
    [9]李四光.关于地震地质问题[J].中国地质,1965,12:1-7.
    [10]李四光.地震地质[M].北京:科学出版社,1973.
    [11]刘国昌.地质力学及其在水文地质工程地质方面的应用[M].北京:地质出版社,1979.
    [12]刘国昌.中国工程地质发展的回顾、反思和展望[J].河北地质学院学报,1988,11(3):1-8.
    [13]陈庆宣,孙叶,邵云惠.中国构造体系的现今活动性[A].见:国际交流地质学术论文集(1)[C].北京:地质出版社,1980.69-78.
    [14]陈庆宣,孙叶,王治顺.运用地质力学方法研究区域地壳稳定性[A].见:地质力学文集,第九集[C].北京:地质出版社,1989.1-7.
    [15]胡海涛.“安全岛”———相对稳定地块概念的应用——以广东核电站场址选择为例[A].见:第四届国际工程地质大会论文集[C].北京:科学出版社,1984.38-46.
    [16]胡海涛,贾加麟,殷跃平.区域地壳稳定性研究的理论与发展[A].见:第五届国际工程地质大会论文集[C].北京:地质出版社,1987.
    [17]王思敬,黄鼎成.攀西地区环境工程地质[M].北京:海洋出版社,1990.
    [18]王思敬,牛宏建.东秦岭—大别山造山带大型推覆构造的物理机制及动力学分析[M].北京:地震出版社,1995.
    [19]孙广忠.岩体结构力学[M].北京:科学出版社,1988.
    [20]张卓元.工程地质勘探[M].北京:地质出版社,1981.119-142.
    [21]王思天.澜沧江小湾电站区域构造稳定性数值模拟研究[A].见:工程地质研究进展[C].成都:西南交通大学出版社,1993.
    [22]殷跃平.区域地壳稳定性研究的专家知识结构模型[J].水文地质工程地质,1990,18(2):8-15.
    [23]殷跃平,胡海涛,康宏达.重大工程选址区域地壳稳定性评价专家系统[M].北京:地震出版社,1992.
    [24]刘传正,胡海涛.工程选址的“安全岛”多级逼近与优选理论[J].中国地质灾害与防治学报,1993,4(1):28-37.
    [25]刘传正.环境工程地质学导论[M].北京:地质出版社,1995.
    [26]吴树仁.清江流域地壳稳定性工程地质研究[M].武汉:中国地质大学出版社,1995.
    [27]易明初.中国区域地壳稳定性图[M].北京:地质出版社,1997.
    [28]孙叶,谭成轩,李开善,等.区域地壳稳定性定量化评价[M].北京:地质出版社,1998.173-203.
    [29]彭建兵,毛彦龙,范文,等.区域稳定性动力学研究[M].北京:科学出版社,2001.
    [30]吴珍汉,叶培盛,吴中海,等.青藏铁路沿线断裂活动的灾害效应[J].现代地质,2003,17(1):1-6.
    [31]胡海涛,许贵森.青南—藏北高原的构造体系及其对地下水的控制[A].见:地质矿产部青藏高原地质文集编委会编.青藏高原地质文集[C].北京:地质出版社,1982.1-40.
    [32]吴珍汉,吴中海,张永双,等.青海西南部乌丽活动断裂系的地质特征及灾害效应[J].地质通报,2003,22(6):437-444.
    [33]W u Zhenhan,Patrick J Barosh,D aogong H u,et al.H azards posed by active m ajor faults along the G olm ud-Lhasa R ailw ay route,Tibetan Plateau,C hina[J].Engineering G eology,2004,74(3-4):163-182.
    [34]党光明,王赞军.青海昆仑山口西M s8.1级地震地表破裂带特征与主要震害:对青藏高原区域稳定性评价的制约[J].地质通报,2002,21(2):105-120.
    [35]廖椿庭,吴满路,张春山,等.青藏高原昆仑山和羊八井现今地应力测量及其工程意义[J].地球学报,2002,23(4):353-358.
    [36]Liao C hunting,Zhang C hunshan,W u M anlu,et al.Stress change near the Kunlun fault before and after the M s8.1Kun-lun earthquake[J].G eophysical R esearch Letter,2003,30(20):2027-2030.
    [37]张培震,王琪,马宗晋.青藏高原现今构造特征与G PS速度场[J].地学前缘,2002,9(2):442-450.
    [38]张培震,王敏,甘卫军,等.G PS观测的活动断裂滑动速率及其对现今大陆动力作用的制约[J].地学前缘,2003,10(特刊):81-92.
    [39]W ang Q i,Zheng Pei-zhen,Freym ueller J,et al.Present-day crustal deform ation in C hina constrained by global positioning system m easurem ents[J].Science,2001,294:574-577.
    [40]李兴唐,许兵,黄典成,等.区域地壳稳定性研究的理论与方法[M].北京:地质出版社,1987.133-152.
    [41]W u Zhonghai,Zhao X itao,W u Zhenhan,et al.Q uaternary geology and faulting in the D am xung-Y angbajain basin[J].AC-TA G eologica Sinica,2004,78(1):273-282.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心