橄榄石相变过程原位观测实验研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
橄榄石是地幔中的主要造岩矿物,橄榄石到其高压相的相变对地幔动力学过程有着广泛的影响。人们通常认为地幔成分中橄榄石的α-β相变是产生410km间断面的原因,并认为橄榄石的定向排列对上地幔中地震波的各向异性有一定的影响。橄榄石的α-β相变可能对板块动力学有着影响,而相变时可能导致的流变弱化会强烈地影响到俯冲带的力学特征。本文简述了橄榄石相变研究的一些新进展,内容包括原位X射线衍射实验技术和冷却方法、实验设备、压标对实验结果精确性的影响以及成核生长和剪切引导两个主要的相变机制。本文的实验通过对(Mg_(0.9)Fe_(0.1))_2SiO_4橄榄石α-β相变过程的原位衍射实验研究确定其形核率和长大率参数,据此估算俯冲带中亚稳态橄榄石的存在状态,从而为分析研究俯冲带的动力学过程提供直接的实验依据。共进行了10组不同温压条件下的实验,分别得到了完全相变和部分相变的数据,从而得到了含Fe橄榄石原位X射线衍射相变实验的第一手重要数据,同时根据红外和光学及电子显微观测分析对实验样品的相变机制做了分析研究。
Olivine is the dominant mineral in the earth mantle. The olivine to its high pressure polymorphs phase transformation has wide implications for many mantle dynamic processes. The 410km discontinuity is usually considered to be caused by the olivine-wadsleyite transformation. And olivine's preferred orientation is important for understanding the rheology and seismic anisotropy in the upper mantle. The α-β transformation of olivine possibly influences the dynamics of the subducting slab, and it may also lead to rheological weakening which strongly affects the mechanical properties of subducting slabs. The recent developments of phase transformation are reviewed in this paper including the following area: the in-situ X-ray diffraction and the quench methods; the apparatus used; the influence of press-scale to the precision of the test results; the nucleation and growth mechanism and the shear-induced mechanism. Then the experiment results of (Mg_(0.9)Fe_(0.1))_2SiO_4 olivine-wadsleyite phase transformation were reported. Ten runs with different P-T conditions were performed. β phase was obtained in some runs and a coexistence of α and β phases were observed in other runs. Therefore, the first-hand in-situ X ray diffraction transformation experimental results of ( Mg, Fe)_2SiO_4 olivine were obtained. And the transformation mechanisms were discussed based on FTIR. ODtical and electrical microscopv observations.
引文
Akimoto S. 1977. Ultrahigh-pressure and temperature experiments and materials of the deep Earth. In: Akimoto and Manghnani H (eds.). Lectures in Earth Science, vol. 2. Iwanami, Tokyo, 157-243
    Anderson OL, Isaak DG and Yamamoto S. 1989. Anharmonicity and the equation of state for gold. J. Appl. Phys. , 65: 1534-1543
    Brearley AJ, Rubie DC and Ito E. 1992. Mechanisms of the transformations between the α,β and γ polymorphs of Mg_2SiO_4 at 15 GPa. Phys. Chem. Minerals. , 18: 343-358
    Brown JM. 1999. The NaCl pressure standard. J. Appl. Phys. , 86:5801-5808
    Carter WJ, Marsh SP, Fritz JN and McQueen RG. 1971. The equation of state of selected materials for high-pressure references. In: Lloyd EC (ed.). Accurate Characterization of the High-Pressure Environment. National Bureau of Standards. Washington, DC: Spec. Publ. , 147-158
    Decker DL. 1971. High-pressure equation of state for NaCl, KCl and CsCl. J. Appl. Phys. , 42: 3239-3244
    Fei Y, Li J, Hirose K, Minarik W, Oman JV, Sanloup C, Westrenen W, Komabayashi T and Funakoshi K. 2004. A critical evaluation of pressure scales at high temperatures by in situ X-ray diffraction measurements. Phys. Earth Planet. Inter. , 143-144: 515-526
    Fouch MJ and Fisher KM. 1996. Mantle anisotropy beneath northwest Pacific subduction zones. J. Geophys. Res. , 101: 15987-16002
    Guyot M, Gwanmesia GD and Liebermann R. 1991. An olivine to beta phase transformation mechanism in Mg_2SiO_4. Geophys. Res. Lett. , 18: 89-92
    Heinz DL and Jeanloz R. 1984. The equation of state of the gold calibration standard. J. Appl. Phys. , 55: 885-893
    Hixson RS and Fritz JN. 1992. Shock compression of tungsten and molybdenum. J. Appl. Phys. , 71: 1721-1728
    Holmes NC, Moriarty JA, Gathers GR and Nellis WJ. 1989. The equation of state of platinum to 660 GPa (6. 6 Mbar). J. Appl. Phys. , 66: 2962-2967
    Hosoya T, Kubo T, Ohtani E, Sano A and Funakoshi K. 2005. Water controls the fields of metastable olivine in cold subducting slabs. Geophys. Res. Lett. , 32: L17305
    Jamieson JC, Fritz JN and Manghnani MH. 1982. Pressure measurement at high temperature in X-ray diffraction studies: Gold as a primary standard. In: Akimoto S and Manghnani MH (eds.). High-Pressure Research in Geophysics. Tokyo, Japan: Cent. for Acad. Publ. ,27-48
    Jing ZC, Ning JY, Wang SG and Zang SX. 2002. Phase and thermal structures of the subduction zones. Geophys. Res. Lett. , 29 (22) :2045,doi:10. 1029
    Karato S, Riedel MR and Yuen DA. 2001. Rheological structure and deformation of subducted slabs in the mantle transition zone: Implications for mantle circulation and deep earthquakes. Phys. Earth Planet. Inter. , 127:83-108
    Katsura T and Ito E. 1989. The system Mg_2 SiO_4-Fe_2 SiO_4 at high pressures and temperatures: Precise determination of stabilities of olivine, modified spinel and spinel. J. Geophys. Res. , 94: 15663-15670
    Katsura T, Yamada H, Nishikawa O, Song MS, Kubo A, Shinmei T, Yokoshi S, Aizawa Y, Yoshino T, Walter MJ, Ito E and Funakoshi K. 2004. Olivine-wadsleyite transition in the system (Mg, Fe)_2SiO_4. J. Geophys. Res., 109, B02209, doi: 10. 1029/2003JB002438
    Kerschhofer L, Sharp TG and Rubie DC. 1996. Intracrystalline transformation of olivine to wadsleyite and ringwoodite under subduction zone conditions. Science, 274: 79-81
    Kirby SH, Stein S, Okal EA and Rubie DC. 1996. Metastable mantle phase transformations and deep earthquakes in subducting oceanic lithosphere. Rev. Geophy. , 34: 261-306
    Kubo T, Ohtani E, Kato T, Morishima H, Yamazaki D, Suzuki A, Mibe K, Kikegawa T and Shimomura O. 1998. An in situ X ray diffraction study of the α-β transformation kinetics of Mg_2 SiO_4. Geophys. Res. Lett. , 25: 695-698
    Kubo T, Ohtani E and Funakoshi K. 2004. Nucleation and growth kinetics of the α-β transformation in Mg_2 SiO_4 determined by in situ synchrotron powder X-ray diffraction. Am. Mineral. , 89: 285-293
    Liu M, Kerschhofer L, Mosenfelder JL and Rubie DC. 1998. The effect of strain energy on growth rates during the olivine-spinel transformation and implications for olivine metastability in subducting slabs. J. Geophys. Res. , 103: 23897-23909
    Madon M and Poirier JP. 1983. Transmission electron microscope observations of α,β and γ-(Mg, Fe)_2 SiO_4 in shocked meteorites: Planar defects and polymorphic transitions. Phys. Earth Planet. Inter. , 33: 31-44
    Madon M, Guyot F, Peyronneau J and Poirier JP. 1989. Electron microscopy of high-pressure phase synthesized from natural olivine in diamond anvil cell. Phys. Chem. Minerals. , 16: 320-330
    Matsui M, Parker SC and Leslie M. 2000. The MD simulation of the equation of state of MgO: Application as a pressure calibration standard at high temperature and high pressure. Am. Mineral. , 85 :312-316
    Mosenfelder JL, Marton FC, Ross CR, Kerschhofer L and Rubie DC. 2001. Experimental constraints on the depth of olivine metastability in subducting lithosphere. Phys. Earth Planet. Inter. , 127: 165-180
    Peyronneau J, Madon M and Poirier JP. 1984. Indirect pressure measurements in diamond cell up to 1 megabar. J. Phys. , 45: 403-404
    Poirier JP. 1981a. Martensitic olivine-spinel transformation and plasticity of the mantle transition zone. In: Anelasticity in the Earth. Am. Geophys. Union, 122
    Poirier JP. 1981b. On the kinetics of the olivine-spinel transition. Phys. Earth Planet. Inter. , 26: 179-187
    Riedel MR and Karato S. 1997 Grain-size evolution in subducted oceanic lithosphere associated with the olivine-spinel transformation and its effects on rheology. Earth Planet. Sci. Lett. , 148: 27-43
    Rubie DC. 1984 The olivine-spinel transformation and the rheology of subducting lithosphere. Nature, 308: 505-508
    Rubie DC, Tsuchida Y, Yagi T, Utsumi W, Kikegawa T, Shimomura O and Brearley AJ. 1990. An in situ X ray diffraction study of the kinetics of the Ni_2 SiO_4 olivine-spinel transformation. J. Geophys. Res. , 95: 15829-15844
    Rubie DC and Ross CR. 1994. Kinetics of olivine-spinel transformation in subducting lithosphere: Experimental constrains and implications for deep slab processes. Phys. Earth Planet. Inter. , 86: 223-241
    Shim S, Duffy TS and Takemura K. 2002. Equation of state of gold and its application to the phase boundaries near 660 km depth in the Earth's mantle. Earth Planet. Sci. Lett. , 203: 729-739
    Speziale S, Zha C, Duffy TS, Hemley RJ and Mao HK. 2001. Quasihydrostatic compression of magnesium oxide to 52 GPa: Implications for the pressure-volume-temperature equation of state. J. Geophys. Res. , 106: 515-528
    Sung CM and Burns RG. 1976. Kinetics of high pressure phase transformations: implications to the evolution of olivine-spinel transition in the downgoing lithosphere and its consequences on the dynamics of the mantle. Tectonophysics, 31: 1-32
    Trampert J and Heijst HJ. 2002. Global azimuthal anisotropy in the transition zone. Science, 296: 1297-1299
    Wang SG, Ye GY, Ning JY el al. 2007a. Modification on the volume fraction formulae of a sort of phase transformations. Chinese J. Geophys. , 50 (6) :1794-1801 (in Chinese with English abstract)
    Wang SG, Ning JY, Ye GY et al. 2007b. Evaluation of the nucleation rate of olivine. Chinese J. Geophys. , 50 (1) : 122-125 (in Chinese with English abstract)
    Zang SX and Ning JY. 2001. Effects of metastable olivine on negative buoyance in subduction zones and their dynamic siganificance. Chinese J. of Geophys. ,44(3) :330-339(in Chinese with English abstract)
    王曙光,叶国扬,宁杰远等.2007a.对一类相变体积分数计算公式的修正.地球物理学报,50(6) :1794-1801
    王曙光,宁杰远,叶国扬等.2007b.对橄榄石相变形核率的估算.地球物理学报,50(1) :122-125
    臧绍先,宁杰远.2001. 亚稳态橄榄石对俯冲带负浮力的影响及其动力学意义.地球物理学报,44(3) :336-345

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心