前寒武纪细粒碎屑岩中纺锤状裂缝的成因分析:以燕山东部长城群为例
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
燕山东部天津蓟县至河北兴隆一带中元古界长城群细粒碎屑岩中,普遍发育有在层面上表现为纺锤状裂缝的沉积构造,并曾经被解释为后生动物遗迹化石或地震震荡液化脉等。这种沉积构造常与变余波痕、皱饰构造等相伴产出。根据初步观察与研究的结果推断,纺锤状裂缝可能是由于微生物席对沉积面的封闭作用,导致沉积物在成岩作用早期发生脱气与脱水等作用的产物,因此可以将其归入微生物参与形成的原生沉积构造(席底构造)的范畴。纺锤状裂缝与其他的席底构造一样,为前寒武纪的沉积环境重塑提供了一个重要的证据,同时也说明在前寒武纪的地球表层环境中,微生物以其新陈代谢的多样性及巨大的生物量,在沉积纪录中留下了重要的烙印。
In the region from Jixian County of Tianjin City to Xinglong County of Hebei Province in eastern Yanshan,the sedimentary structures which present the spindle-shaped crack on the surface are widely developed in the fine clastic strata of the of the Changcheng Group of the Mesoproterozoic,and they have been explained as the metazoan trace fossils or the seismic-induced liquefied veins etc.The structures always co-exists with the palimpsest ripples,the wrinkle structures,and so on.The preliminary studies indicate that the spindle-shaped cracks might be the products of degasing and dewatering of the sediments during early diagenesis,which are caused by the seal of overlying microbial mat,thus,they can be grouped into the category of the microbially induced primary sedimentary structures(the matground structures).Spindle-shaped cracks and the other matground structures provide an important evidence to reconstruct the sedimentary environment of the Precambrian.These structures also illuminate the metabolism diversity and enormous biomass of microbes in the Precambrian on the earth surface,and thus form important marks in the sedimentary records.
引文
[1]Pettijohn F,Potter P.Atlas and Glossory of Primary SedimentaryStructure[M].Berlin:Springer-Verlag,1964:1-370.
    [2]朱士兴,梁玉左,杜汝霖,等.中国的叠层石[M].天津:天津大学出版社,1993:1-398.
    [3]赵震.叠层石[M].北京:石油工业出版社,1994:302-316.
    [4]Walter M,Heys G.Links between the rise of the Metazoa and thedecline of stromatolites[J].Precambrian Research,1985,29:149-174.
    [5]Grotzinger J P,Knoll A H.Stromatolites in Precambrian carbon-ates:Evolutionary mileposts or environmental dipsticks?[J].Annual Reviewin Earth and Planetary Science,1999,27:313-358.
    [6]Riding R.Microbial carbonates:The geological record of calcifiedbacterial-algal mats and biofilms[J].Sedimentology,2000,47(1):179-214.
    [7]Dunham R.Classification of carbonate rocks according to deposi-tional textures[J].American Association of Petroleum GeologistsMemory,1963,1:108-121.
    [8]Park R.A note on the significance of Camination in stromatolites[J].Sedimentology,1977,23:379-394.
    [9]Pfluger F.Matground structures and redox facies[J].Palaios,1999,14:25-39.
    [10]Schieber J.Microbal mats in terrigenous clastics:The challengeof indentification in the rock record[J].Palaios,1999,14:3-12.
    [11]Gehling J.Environmental interpretation and a sequence strati-graphic framework for the terminal Proterozoic Ediacara Memberwithin the Rawnsley Quartzite South Australia[J].PrecambrianResearch,2000,100:65-95.
    [12]Noffke N,Gerdes G.Microbially induced sedimentary structures-a new category within the classification of primary sedimentarystructures[J].Journal of Sedimentary Research,2001,71:649-656.
    [13]Noffke N.Geobiology:a-holistic scientific discipline[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2005,219(1-2):1-3.
    [14]Bottjer D.Geobiology and the fossil record:eukaryotes,mi-crobes,and their interactions[J].Palaeogeography,Palaeocli-matology,Palaeoecology,2005,219(1-2):5-21.
    [15]Naylor L.The contributions of biogeomorphology to the emergingfield of geobiology[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2005,219(1-2):35-51.
    [16]Brocks J,Logan G.Archean molecular fossils and the early riseof eukaryotes[J].Science,1999,285:1033-1036.
    [17]Brasier M,Green O.Questioning the evidence for Earth's oldestfossils[J].Nature,2002,416:76-91.
    [18]Allwood A,Walter M.Stromatolite reef from the early Archeaneon of Australia[J].Nature,2006,441:714.
    [19]Bouougri E,Porada H.Mat-related sedimentary structures in Neo-proterozoic peritidal passive margin deposits of the West Africancraton(Anti-Atlas Morocco)[J].Sedimentary Geology,2002,153:85-106.
    [20]Noffke N.Microbially induced sedimentary structures in Archeansandstones:A new window into early life[J].Gondwana Re-search,2007,11:336-342.
    [21]Seilacher A.Biomat-related lifestyles in the Precambrian[J].Palaios,1999,14:86-93.
    [22]梅冥相,高金汉,孟庆芬.从席底构造到第五类原生沉积构造:沉积学中具有重要意义的概念[J].现代地质,2006,20(3):413-422.
    [23]梅冥相,孟庆芬,刘智荣.微生物参与形成的原生沉积构造研究进展综述[J].古地理学报,2007,9(4):353-367.
    [24]Hagadorn J,Bottjer D.Wrinkle structures:Microbially mediatedsedimentary structures in siliclastic settings at the Proterozoic-Phanerozoic transition[J].Geology,1997,25:1047-1050.
    [25]Endo R.Manchuriophycus nov.gen.from a Sinian Formation ofSouth Manchurian[J].Japanese Journal of Geology and Geogra-phy,1933,9:43-48.
    [26]张录易,华洪.长城系中宏观遗迹化石真假初探[M]//杜汝霖.探索生物起源———庆祝杜汝霖教授荣膺李四光地质科学奖.北京:地震出版社,2002:205-210.
    [27]宋天锐,高健.这些是中国发现的最古老的后生动物化石吗?[J].科学通报,1985,30(12):926-928.
    [28]宋天锐,高健.最古老的后生动物化石———对北京十三陵前寒武纪常州沟组充填管构造的探讨[J].沉积学报,1985,3(2):85-96.
    [29]宋天锐,高健.北京十三陵前寒武系沉积岩[M].北京:地质出版社,1987:1-193.
    [30]乔秀夫,高林志.燕辽裂陷槽中元古代古地震与地理[J].古地理学报,2007,9(4):337-352.
    [31]梅冥相,高金汉.岩石地层的相分析方法与原理[M].北京:地质出版社,2005:268-279.
    [32]和政军,张新元.燕山地区长城纪扇三角洲沉积[J].沉积与特提斯地质,1993(5):1-5.
    [33]温献德.华北北部中、上元古界的大陆裂谷模式和地层划分[J].前寒武纪研究进展,1997,20(3):21-28.
    [34]刘为付,朱筱敏,于晓玲.燕山长城纪沉积层序的形成[J].大庆石油学院学报,2004,28(6):4-7.
    [35]朱士兴,黄学光,孙淑芬.华北燕山中元古界长城系研究的新进展[J].地层学杂志,2005,29(增刊):437-449.
    [36]徐德斌,王敦则,白志达.河北兴隆地区中元古界串岭沟组沉积环境与相模式[J].中国地质,2002,29(2):167-171.
    [37]梅冥相,白志达,徐德斌,等.河北兴隆团山子组旋回层序特征及地层格架[J].桂林工学院学报,1998,18(1):35-40.
    [38]徐德斌,白志达,王敦则.河北省兴隆地区大红峪组沉积古环境研究[J].地层学杂志,2002,26(1):73-79.
    [39]Kauffman E,Steidtmann J.Are these the oldest metazoan tracefossils?[J].Geological Society of America,1976,8(6):947-948.
    [40]Cloud P,Kauffman E,Steidtmann J.Are the Medicine Peak Qu-artzite“Dubiofossils”Fluidevasion tracks?[J].Geology(boulder),1983,11(10):618-621.
    [41]Porada H,Bouougri E.Neoproterozoic trace fossils vs.microbialmat structures:Examples from the Tandilia Belt of Argentina[J].Gondwana Research,2008,13(4):480-487.
    [42]Pratt B.Syneresis crack:subaqueous shrinkage in argillaceoussediments caused by earthquake-induced dewatering[J].Sedi-mentary Geology,1998,117:1-10.
    [43]Gerdes G,Noffke N.Microbial signatures in peritidal sediments:a catalogue[J].Sedimentology,2000,47:279-308.
    [44]Noffke N,Gerdes G,Klenke T.Benthic cyanobacteria and theirinfluence on the sedimentary dynamics of peritidal depositionalsystems(siliciclastic,evaporitic salty and evaporitic carbonatic)[J].Earth-Science Reviews,2003,62:163-176.
    [45]Frances W,AndrewS,David S.Bacterial biofilms as biomarkersin terrestrial and extraterrestrial materials[J].Geological Socie-ty of America,1999,31(7):378.
    [46]Harrison J,Raymond J.Biofilms:A new understanding of thesemicrobial communities is a revolution that may transform the sci-ence of microbiology[J].American Scientist,2005,93:508-515.
    [47]Porada H,Bouougri E.Wrinkle structures:a critical review[J].Earth-Science Reviews,2007,81:199-215.
    [48]Bottjer D,Hagadorn J,Dornbos S.The Cambrian substrate revo-lution[J].GSA Today,2000,10(9):1-7.
    [49]方宗杰.生物大绝灭与复苏——来自华南古生代和三叠纪的证据[M].合肥:中国科技大学出版社,2004:475-542.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心