一维块系地质块体波动特性的试验和理论研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
深部岩体具有块系等级构造特性,俄罗斯深部矿山原位量测得到的摆型波(μ波)产生于动力冲击作用下(如深部地震、岩爆和封闭核爆等)块系岩体的运动,是一种不同于传统纵波和横波的新型非线性弹性波。为了证明μ波的存在,并对块系块体介质中应力波传播特性及块体材料、尺寸和结构形式的影响进行研究,利用自主研发的深部岩体动态特性试验系统,分别对6种具有不同特征尺寸的花岗岩和水泥砂浆块系块体模型和连续块体模型进行一维低速冲击试验。试验表明:对于两种结构形式的介质,一维冲击作用下,块体(测点)三向加速度幅值均随冲击能量提高近似线性增加。对于块系块体介质,块体三向加速度幅值随块体个数增加呈一阶指数衰减,并且衰减系数与冲击能量无关;冲击能量仅仅改变加速度波谱密度幅值,而对三向振动极值频率没有影响,并且块体越多,能量越大,块体振动波谱趋于低频波的趋势越强;通过对比试验结果和原位量测结论(关于μ波无量纲冲击能量判据,波速和振幅,波谱峰值频率等),证明了块系介质中出现的低频低速波就是μ波;通过对5种块系块体模型三向加速度频谱进行分析,证明其振动极值频率满足定量的规范序列关系(2~(1/2))i f 0,推广了原位测量试验结论。并且上述规律中,块体材料和尺寸效应不明显,而对于连续块体介质上述规律均不成立。最后,分别采用黏弹性夹层和刚性块体、集中质点以及弹性块体三种理论计算模型对冲击作用下块系块体运动参数进行分析,计算结果和试验曲线吻合较好,并讨论了夹层参数的敏感性。
Deep rock mass is a block-hierarchical structure.Pendulum-type wave(μ wave) discovered in Russian deep mines is a new type nonlinear and elastic wave,which is induced by the motion of geo-blocks under external pulse(such as deep seismic,rock burst and confined nuclear explosion) and different from the traditional longitudinal or transverse waves.In order to confirm the existence of the μ wave,the propagation properties of stress wave in blocks medium as well as the influences of the block materials,dimensions and geo-structures are studied.Based on the multipurpose testing system developed by the authors,one-dimensional low-speed impact tests are carried out on six granite and cement mortar blocks and continuum block models with different characteristic dimensions,respectively.For both block and continuum models,three-dimensional acceleration amplitudes of each sub-block(measured points) increase almost linearly with the increase of the vertical impact energies.For block models,three-dimensional acceleration amplitudes of each sub-block attenuates exponentially(one order) with the increase of the disturbed sub-block,and the decay coefficients are independent on impact energies.The increasing impact energies only increase the amplitude of the spectral density,and have nearly no effect on the 3D local maximal frequencies.The more the number of the blocks and the larger the external pulse,the more obvious of the tendency that the dominant frequencies develop toward low frequency region.Through comparison of the model test data with the in-situ measurements(critical energy for emergence of μ wave,amplitude and velocity,and the maximum spectral frequencies,etc.),the low-frequency and low-velocity waves occurring in blocks models are validated as μ wave.Based on the analysis of spectral densities time histories of 3D accelerations of five block models,the frequencies corresponding to the local maximums of spectral density curves of three-directional acceleration time histories satisfy quantitative canonical sequences of (2~(1/2)) i f 0,which extends the conclusions of in-situ tests.The effects of material and dimension of model blocks are not obvious,and the above laws are not validated by continuum block medium.Finally,the visco-elastic interlayer and rigid blocks,concentrated mass as well as elastic blocks analytical models are established for theoretical analysis of acceleration time histories.The calculate results agreed well with the test data,and the effects of the parameters of interlayer are discussed.
引文
[1]SADOVSKY M A.Natural lumpiness of rock[J].Dokl Akad Nauk,1979,247(4):21–29.
    [2]KURLENYA M V,OPARIN V N.Geo-mechanics,problems of nonlinear geo-mechanics.PartⅡ[J].Journal of Mining Science,2000,36(4):305–326.
    [3]KURLENYA M V,OPARIN V N,Geo-mechanics,problems of nonlinear geo-mechanics(PartⅠ)[J].Journal of Mining Science,1999,36(4):12–16.
    [4]SHEMYAKIN E I,FISENKO G L,KURLENYA M V.Zonal disintegration of around underground workings,PartⅠ:date of on-site observations[J].Journal of Mining Science,1986,22(3):157–168.
    [5]SHEMYAKIN E I,FISENKO G L,KURLENYA M V.Zonal disintegration of around underground workings,PartⅡ:rock fracture simulated in equivalent materials[J].Journal of Mining Science,1986,22(4):223–232.
    [6]SHEMYAKIN E I,FISENKO G L,KURLENYA M V.Zonal disintegration of around underground workings,PartⅢ:theoretical concepts[J].Journal of Mining Science,1987,23(1):1–5.
    [7]SHEMYAKIN E I,FISENKO G L,KURLENYA M V.Zonal disintegration of around underground workings,PartⅣ:practical applications[J].Journal of Mining Science,1989,25(4):297–302.
    [8]钱七虎,李树忱.深部岩体工程围岩分区破裂化现象研究综述[J].岩石力学与工程学报,2008,27(6):1278–1284.(QIAN Qi-hu,LI Shu-chen.A review of research on the zonal disintegration phenomenon in the deep rock mass engineering[J].Chinese Journal of Rock Mechanics and Engineering,2008,27(6):1278–1284.(in Chinese))
    [9]KURLENYA M V,OPARIN V N,VOSTRIKOV V I.Effect of anomalously low friction in block media[J].Journal of Applied Mechanics and Technical Physics,1999,40(6):1116–1120.
    [10]王洪亮,葛涛.王德荣,等.块系岩体动力特性理论与实验对比分析[J].岩石力学与工程学报,2007,26(5):951–-958.(WANG Hong-liang,GE Tao,WANG De-rong,et al.Comparison of theoretical and experimental analyses of dynamic characteristics of block rock mass[J].Chinese Journal of Rock Mechanics and Engineering,2007,26(5):951–958.(in Chinese))
    [11]吴昊,方秦,王洪亮.深部块系岩体超低摩擦现象的机理研究[J].岩土工程学报,2008,30(5):769–775.(WU Hao,FANG Qin,WANG Hong-liang.Mechanism of anomalously low friction phenomenon in deep block rock mass[J].Chinese Journal of Geotechnical Engineering,2007,30(5):769–775.(in Chinese))
    [12]KURLENYA M V,OPARIN V N,VOSTRIKOV V I.Pendulum-type waves:PartⅠ.state of the problem and measuring instrument and computer complexes[J].Journal of Mining Science,1996,32(3):159–163.
    [13]KURLENYA M V,OPARIN V N,VOSTRIKOV V I.Pendulum-type waves:PartⅡ.experimental methods and main results of physical modeling[J].Journal of Mining Science,1996,32(4):245–273.
    [14]KURLENYA M V,OPARIN V N,VOSTRIKOV V I.Pendulum-type waves:PartⅢ.data of on-site observations[J].Journal of Mining Science,1996,32(5):341–361.
    [15]吴昊,方秦.深部块系岩体摆型波现象的研究进展[J].力学进展,2008,38(5):601–609.(WU Hao,FANG Qin.State of arts of pendulum-type wave phenomenon in the deep block rock mass[J].Advances In Mechanics,2008,38(5):601–609.(in Chinese))
    [16]ALEKSANDROVA N I,CHERNIKOV A G,SHER E N.Experimental investigations into the one-dimensional calculated model of wave propagation in block medium[J].Journal of Mining Science,2005,41(3):232–239
    [17]ALEKSANDROVA N I,SHER E N.Modeling of wave propagation in block media[J].Journal of Mining Science,2004,40(6):579–587.
    [18]王德荣,陆渝生,冯淑芳,王明洋.深部岩体动态特性多功能试验系统的研制[J].岩石力学与工程学报,2008,27(3):601–606.(WANG De-rong,LU Yu-sheng,FENG Shu-fang,WANG Ming-yang.The develop to multi-functional test system of deep level rock body dynamic specialty[J].Chinese Journal of Rock Mechanics and Engineering,2008,27(3):601–606.(in Chinese))
    [19]WU Hao,FANG Qin,ZHANG Ya-dong,LIU Jin-chun,GONG Zi-ming.Mechanism of pendulum-type wave phenomenon in deep block rock mass[J].Mining Science&Technology,2009,19(6):699–708.
    [20]ANNIN B D,KARPOV E V.Modeling the deformation of rock with rough surfaces of block contact under quasi-static and dynamic loading conditions[J].Journal of Applied Mechanics and Technical Physics,2007,48(3):445–44.
    [21]KURLENYA M V,OPARIN V N,VOSTRIKOV V I.Rock mechanics.Geo-mechanical conditions for quasi-resonances in geo-materials and block media[J].Journal of Mining Science,1998,34(5):379–386.
    [22]LUKYASHKO O A,SARAIKIN V A.Transient one-dimensional wave processes in a layered medium[J].Journal of Mining Science,2007,43(2):145–158.
    [23]CAI J G,ZHAO J.Effects of multiple parallel fractures on apparent attenuation of stress wave in rock masses[J].International Journal of Rock Mechanics and Mining Science,2000,37(1):661–682.
    [24]ALEKSANDROVA N I,SHER E N,CHERNIKOV A G.Effect of viscosity of partings in block-hirarchical media on propagation of low-frequency pendulum waves[J].Journal of Mining Science,2008,44(3):225–234

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心