马尼拉海沟俯冲带增生楔中天然气水合物的流体运移通道
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
南海东北部海域水深、沉积厚度大、沉积速率高和有机质含量丰富,为马尼拉增生楔中天然气水合物成藏提供了必要的气源,且相应适宜的温压条件以及构造背景也有利于天然气水合物的形成与赋存,其中马尼拉俯冲带俯冲前缘以及增生楔中的断裂系统成为天然气水合物成藏的非常重要的运移通道。通过对地震剖面中断裂系统和三维地貌图的精细解释,分析了马尼拉海沟俯冲带存在的海沟前缘正断层、海沟轴部的盲断层以及增生楔中的盲冲断层或逆冲断层,直到最后发育成隔断叠瓦状岩片的逆冲断层组,这些断裂系统反映出增生楔上天然气水合物的含气流体的形成、运移及聚集过程,成为天然气水合物成藏的运移通道。
Great depth of water and thickness of sediment,high rate of deposition and rich content of organic matter in northeastern South China Sea provide the formation of gas hydrate with the necessary gas supply.In addition,the appropriate condition of temperature and pressure and tectonic setting are favorable to the occurrence of gas hydrate.Specially,the fault system in the deformation front and accretionary wedge of Manila subduction zone is proved to be the pathway of gas-bearing fluid migration of gas hydrate.Based on the marine geology of northeastern South China Sea or offshore of southwestern Taiwan,multiple-channel seismic profiles and high resolution sub-bottom 3D-topographic images interpreted and analyzed,it is found that there are many normal faults in the deformation front,blind faults in the trench axis and(blind) thrusts in the accretionary wedge,which developed into thrust group that divided into the imbricate thrust sheets.The all faults and thrusts make up a fault system,constituting of normal faults,blind faults and(blind) thrusts.The fault system mentioned above not only reflects the process of South China Sea plate diving underneath of Luzon island arc,but also is regarded as the channel of fluid migration,indicating the process of formation,migration and concentration for fluid of gas hydrate in accretionary wedge.
引文
[1]Stoll R D,Ewing J I,Bryan G M.Anomalous wave velocities insediments containing gas hydrate[J].Journal of GeophysicalResearch,1971,76:2090-2094.
    [2]Ewing J I,Hollister C H.Regional aspects of deep sea drilling inthe western North Atlantic[CD-ROM].Initial Reports,DeepSea Drilling Project 11,1972:951-973.
    [3]Tobin HJ,Moore J C,Mackay M E,et al.Fluid-flow along astrike-slip-fault at the toe of the Oregon accretionary prism—Im-plications for the geometry of frontal accretion[J].GeologicalSociety of America Bulletin,1993,105(5):569-582.
    [4]Zuhlsdorff L,Spiess V,Hubscher C,et al.Implications for fo-cused fluid transport at the northern Cascadia accretionary prismfrom a correlation between BSR occurrence and near-sea-floor re-flectivity anomalies imaged in a multi-frequency seismic data set[J].International Journal of Earth Sciences,2000,88(4):655-667.
    [5]Delisle G,Berner U.Gas hydrates acting as cap rock to fluiddischarge in the Makran accretionary prism[J].Tectonic andClimatic Evolution of the Arabian Sea Region,2002,195:137-146.
    [6]Moore G F,Taira A,Klaus A,et al.Newinsights into deforma-tion and fluid flow processes in the Nankai Trough accretionaryprism:Results of Ocean Drilling Program Leg 190[J].Geo-chemistry,Geophysics,Geosystems,2001,2(10):1058,doi:10.1029/2001GC000166.
    [7]Baba K,Yamada Y.BSRs and associated reflections as an indi-cator of gas hydrate and free gas accumulation:An example of ac-cretionary prism and forearc basin system along the NankaiTrough,off Central Japan[J].Resource Geology,2004,54(1):11-24.
    [8]Ghosh R,Sain K.Effective medium modeling to assess gas hy-drate and free-gas evident from the velocity structure in the Mak-ran accretionary prism,offshore Pakistan[J].Marine Geophysi-cal Researches,2008,29(4):267-274.
    [9]丁巍伟,程晓敢,陈汉林,等.台湾增生楔的构造单元划分及其变形特征[J].热带海洋学报,2005,24(5):53-59.
    [10]许升辉,阎贫,刘海龄.台湾西南海域似海底反射分析[J].热带海洋学报,2005,24(2):79-85.
    [11]宋海斌,吴时国,江为为.南海东北部973剖面BSR及其热流特征[J].地球物理学报,2007,50(5):1508-1517.
    [12]黄慈流,钟建强.南海东北部及其邻区新生代构造事件[J].热带海洋,1994,13(1):55-62.
    [13]姚伯初,万玲,吴能友.大南海地区新生代板块构造活动[J].中国地质,2004,31(2):113-122.
    [14]McDonnell S L,Max MD,Cherkis N Z,et al.Tectono-sedi-mentary controls on the likelihood of gas hydrate occurrence nearTaiwan[J].Marine and PetroleumGeology,2000,17(8):929-936.
    [15]李家彪,金翔龙,阮爱国,等.马尼拉海沟增生楔中段的挤入构造[J].科学通报,2004,49(10):1000-1008.
    [16]Hirtzel J,Chi W C,Reed D.Destruction of Luzon forearc basinfrom subduction to Taiwan arc-continent collision[J].Tectono-physics,2009,479:43-51.
    [17]姚伯初.南海天然气水合物的形成和分布[J].海洋地质与第四纪地质,2005,25(2):81-90.
    [18]Liu C S,Schnurle P,Wang Y.Distribution and characters of gashydrate offshore of southwestern Taiwan[J].Terrestrial,Atmos-pheric and Oceanic Sciences,2006,17(4):615-644.
    [19]Huang C Y,Chien C W,Zhao M,et al.Geological study of ac-tive cold seeps in the syn-collision accretionary prism Kaopingslope off SW Taiwan[J].Terrestrial,Atmospheric and OceanicSciences,2006,17(4):679-702.
    [20]Yan P,Deng H,Liu HL.The geological structure and prospectof gas hydrate over the Dongsha slope,South China Sea[J].Terrestrial,Atmospheric and Oceanic Sciences,2006,17(4):645-658.
    [21]Claypool G E,Kvenvolden K A.Methane and other hydrocarbongases in marine sediments[J].Annual Review of Earth andPlanetary Sciences,1983,11(1):299-327.
    [22]Kvenvolden K A.A review of the geochemistry of methane innatural gas hydrate[J].Organic Geochemistry,1995,23:177-189.
    [23]樊栓狮,刘锋,陈多福.海洋天然气水合物的形成机理探讨[J].天然气地球科学,2004,15(5):524-530.
    [24]吴时国,姚根顺,董冬冬,等.南海北部陆坡大型气田区天然气水合物的成藏地质构造特征[J].石油学报,2008,29(3):324-328.
    [25]陆红锋,刘坚,陈芳,等.南海台西南区碳酸盐岩矿物学和稳定同位素组成特征——天然气水合物存在的主要证据之一[J].地学前缘,2005,12(3):268-276.
    [26]Hyndman R D,Davis E E.A mechanism for the formation ofmethane hydrate and seafloor bottom-simulating reflectors by verti-cal fluid expulsion[J].Journal of Geophysics Research—SolidEarth,1992,97(B5):7025-7041.
    [27]Wang P,Prell W L,Blum P,et al.Proceeding of the OceanDrilling Program[CD-ROM].Initial Reports,184:CollegeStation,TX:Ocean Drilling Program,2000.
    [28]栾锡武,翟世奎,干晓群.冲绳海槽中部热液活动区构造地球物理特征分析[J].沉积学报,2001,19(1):43-47.
    [29]龚跃华,杨胜雄,王宏斌,等.南海北部神狐海域天然气水合物成藏特征[J].现代地质,2009,23(2):210-216.
    [30]浦晓强,陶小晚,张会领.南海北部陆坡天然气水合物存在的地球物理和地球化学特征[J].天然气地球科学,2009,20(4):620-626.
    [31]金庆涣,张光学,杨木壮,等.天然气水合物资源概论[M].北京:科学出版社,2006:108-109.
    [32]姚伯初,杨木壮.南海晚新生代构造运动与天然气水合物资源[J].海洋地质与第四纪地质,2008,28(4):93-100.
    [33]方银霞,高金耀,黎明碧,等.冲绳海槽天然气水合物与地质构造的关系[J].海洋地质与第四纪地质,2005,25(1):85-91.
    [34]Milkov A V.Worldwide distribution of submarine mud volcanoesand associated gas hydrate[J].Marine Geology,2000,167(1/2):29-42.
    [35]Chiu J K,Tseng W H,Liu C S.Distribution of gassy sedimentsand mud volcanoes offshore southwestern Taiwan[J].Terrestri-al,Atmospheric and Oceanic Sciences,2006,17(4):703-722.
    [36]Milkov AV,Sassen R.Economic geology of offshore gas hydrateaccumulations and provinces[J].Marine and Petroleum Geolo-gy,2002,19(1):1-11.
    [37]Yan P,Berne S,Vagner P,et al.Mud volcanoes at the shelfmargin of the East China Sea[J].Marine Geology,2003,194:135-149.
    [38]王宏语,孙春岩,张洪波,等.西沙海槽潜在天然气水合物成因及形成地质模式[J].海洋地质与第四纪地质,2005,25(4):85-91.
    [39]吴能友,杨胜雄,王宏斌,等.南海北部陆坡神狐海域天然气水合物成藏的流体运移体系[J].地球物理学报,2009,52(6):1641-1650.
    [40]Wessel P,Smith W H F.New version of the generic mappingtools(GMT)version3.0 released[J].Trans AGUEOS,1995,76:329.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心