琼东南盆地断裂活动性定量计算及其发育演化模式
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
在地震剖面解释的基础上,运用断层活动速率法和位移-距离法对琼东南盆地主要断裂系统的活动性进行了定量计算。结果表明,断裂的活动性与盆地的演化阶段相对应,同时可以在同裂陷阶段划分出始新世—早渐新世裂陷幕和晚渐新世断坳转换幕,这两幕裂陷控制了盆地深部的基本构造格局。单条断层在早渐新世至晚渐新世期间断裂主要活动中心存在由东向西迁移的过程,盆地断裂系统活动中心在晚渐新世至早中新世也存在由东向西迁移的过程,盆地内规模较大的复合断裂带具有区段式活动的特征。将盆地内断裂系统发育模式总结为两种:以6号和11号断裂带为代表的简单生长模型,断裂系统发育演化过程中表现为单一区段断层独立生长的特征,断层简单地由中间向两侧生长,断层位移距离曲线自始至终为半椭圆型,且最大位移大致位于断层中部;以2号和5号断裂带为代表的生长连通型生长模式,断裂带由多条区段式活动的断层生长连接形成,其生长发育过程表现为沿断层面纵向上最大滑移量由各个区段的中心向各个区段交汇处迁移,由此各个区段断端破裂扩展,最终相互连接而形成一条大型断裂带。
Based on geological structural interpretation of 2D and 3D seismic profiles, activities of main faults in Qiongdongnan basin (QDNB) have been studied by using throw rate plots and displacement-distance plots. The results show that fault activities corresponded to evolution stages of the basin, and the syn-rifting stage of QDNB can be further divided into Eocene-Early Oligocene rifting episode and Late Oligocene rift-sag transition episode, which controlled the structural pattern in deep QDNB. The center of single fault activity (such as No. 6 fault and No. 11 fault) migrated from east to west during Early Oligocene to Late Oligocene, and the center of the whole fault system in QDNB also migrated from east to west during Late Oligocene to Early Miocene. The composite type faults, such as No. 2 fault, showed segmentation feature. The modes of fault development are of two kinds: The non-interacting mode: the fault system grew as a single segment during its development and evolution, such as No. 6 fault and No.11 fault. In this mode, the fault simply grew from the middle to both sides and it become larger due to systematic increase in both maximum displacement and length, and the displacement-distance plot of the fault system is semi-elliptic during the whole process; The interacting mode: the fault zone is composed of several segments, and its growth was mainly due to growing-connecting of the adjacent segments. The development process of the fault system shows that, along the fault surface in vertical direction, the maximum displacement migrated from each segment center to each transition position, which led to fracture propagation of each fault segment and finally joined the separated fault segrnents together to form a fault zone.
引文
Adam J, Urai J L, Wieneke B, et al. 2005. Shear localisation and strain distribution during tectonic faulting — new insights from granular- flow experiments and hight-resolution optical image correlation techniques [J]. Journal of Structural Geology, 27: 283-301.
    Cowie P A, Gupta S and Dawers N H. 2000. Implication of fault array evolution for synrift depocentre development: insights from a numerical fault growth model [J]. Basin Research, 12: 241-261.
    Cowie P A and Scholz C H. 1992a. Physical explanation for the displacement-length relationship of faults using a post-yield fracture mechanics model [J]. Journal of Structural Geology, 14: 1133-1148.
    Cowie P A and Scholz C H. 1992b. Displacement-length scaling relationship for faults: Data synthesis and discussion [J]. Journal of Structural Geology, 14: 1149-1156.
    Davies S J, Dawers N H and Mcleod A E. 2000. The structural and sedimentological evolution of early synrift successions: the Middle Jurassic Tarbert Formation, North Sea [J]. Basin Research, 12: 343-365.
    Dawers N H, Anders M H and Scholz C H. 1993. Fault length and displacement: Scaling laws [J]. Geology, 21: 1107-1110.
    Dong Jin, Zhang Shihong and Jiang Yongbiao. 2004. The displacement- length relationship of faults and its significance [J]. Earth Science Frontiers, 11(4): 575-584. (in Chinese with English abstract)
    Gawthorpe R L and Leeder M R. 2000. Tectono-sedimentary evolution of active extentional basins [J]. Basin Research, 12: 195-218.
    Kenneth D, Douglas W B, Donald F, et al. 2005. Thrust-fault growth and segment linkage in the active Ostler fault zone, New Zealand [J]. Journal of Structural Geology, 27: 1528-1546
    Kim Y S and Sanderson D J. 2005. The relationship between displacement and length of fauls: a reviw [J]. Earth-Science Reviews, 68: 317-334.
    Laurent M, Paul G and David D P. 2002. Effects of local stress perturbation on secondary fault development [J]. Journal of Structural Geology, 24: 145-153.
    Li Xuxuan, Zhong Zhihong and Dong Weiliang. 2006. Paleogene rift structure and its dynamics of Qiongdongnan Basin [J]. Petroleum Expoloration and Development, 33(6): 713-721. (in Chinese with English abstract)
    Li Xuxuan and Zhu Guanghui. 2005. The fault system and its hydrocarbon carrier significance in Qiongdongnan basin [J]. China Offshore Oil and Gas, 17(1): 127-138. (in Chinese with English abstract)
    Li Z G, Han M L, Zhang G C, et al. 2009. Sedimentological characteristics of the coal seams of Yacheng Formation in Qiongdongnan Basin, China [J]. Energy Exploration & Exploitation, 27: 411-424.
    Liu Hailing, Yan Pin, Zhang Boyou, et al. 2004. Pre-Cenozoic basements of the South China Sea and eastern Tethyan realm [J]. Marine Geology & Quaternary Geology, 24(1): 15-27. (in Chinese with English abstract)
    Marchal D and Guiraud M. 2003. Geometric and morphologic evolution of normal fault planes and traces form 2D to 4D data [J]. Journal of Structural Geology, 25: 135-158.
    Matthew A and Stephen J M. 2004. Fault terminations and barriers to fault growth [J]. Journal of Structural Geology, 26: 1885-1896.
    Mauro A. 2006. Spatial structures in earthquakes and faults: quantifying similarity in simulated stress fields and natural data sets [J]. Journal of Structural Geology, 28: 998-1018.
    Mcleod A E, Dawers N H and Underhill R. 2000. The propagation and linkage of normal faults: Insights from the Strathspey-Brent- Statfjord fault array, northern North Sea [J]. Basin Research, 12: 263-284.
    Roger S and Antonio B. 2004. A linkage criterion for segmented normal faults [J]. Journal of Structural Geology, 26: 2251-2267.
    Simon A K, Atilla A and David D P. 2000. Joints at high angles to normal fault strike: an explanation using 3-D numerical models of fault- perturbed stress fields [J]. Journal of Structural Geology, 22: 1-23.
    Walsh J J, Nicol A and Childs C. 2002. An alternative model for the growth of faults [J]. Journal of Structural Geology, 24: 1669-1675.
    Wei Kuisheng, Cui Hanyun, Ye Shufen, et al. 2001. High-precision sequence stratigraphy in Qiongdongnan basin [J]. Earth Science — Journal of China University of Geosciences, 26(1): 59-66. (in Chinese with English abstract)
    Xiao X M, Xiong M, Tian H, et al. 2006. Determination of the source area of the Ya13-1 gas pool in the Qiongdongnan Basin, South China Sea [J]. Organic Geochemistry, 37: 990-1002.
    Xie Y H, Wang Z F and Tong C X. 2008. Petroleum geology of Yacheng 13-1, the largest gas field in China's offshore region [J]. Marine and Petroleum Geology, 25: 433-444.
    Xie Wenyan, Wang Tao, Zhang Yiwei, et al. 2009. Characteristics and dynamic analysis of Cenozoic rifting and magmatism in southwest Qiongdongnan basin [J]. Geotectonica et Metallogenia, 33(2): 199-205. (in Chinese with English abstract)
    Xie Wenyan, Zhang Yiwei, Sun Zhen, et al. 2007. Characteristics and formation mechanism of faults in Qiongdongnan basin [J]. Marine Geology & Quaternary Geology, 27(1): 26-33. (in Chinese with English abstract)
    Yu Junfeng and Duan Rutai. 2008. Forming mechanism and developing characteristics of eastern segment of No.2 fault zone in Qiongdongnan basin [J]. Geotectonica et Metallogenia,32(3): 293-299. (in Chinese with English abstract)
    董进, 张世红, 姜勇彪. 2004. 正断层位移-距离关系及其研究意义[J]. 地学前缘, 11(4): 575-584.
    李绪宣, 钟志红, 董伟良, 等. 2006. 琼东南盆地古近纪裂陷构造特征 及其动力学机制[J]. 石油勘探与开发, 33(6): 713-721.
    李绪宣, 朱光辉. 2005. 琼东南盆地断裂系统及其油气输导特征[J], 中国海上油气, 17(1): 127-138.
    刘海龄, 阎贫, 张伯友, 等. 2004. 南海前新生代基底与东特提斯构造 域[J]. 海洋地质与第四纪地质, 24(1): 15-27.
    魏魁生, 崔旱云, 叶淑芬, 等. 2001. 琼东南盆地高精度层序地层学研 究[J]. 地球科学, 26(1): 59-66.
    谢文彦, 王涛, 张一伟, 等. 2009. 琼东南盆地西南部新生代断陷特征 与岩浆活动机理[J]. 大地构造与成矿学, 33(2): 199-205.
    谢文彦, 张一伟, 孙珍, 等. 2007. 琼东南盆地断裂构造与成因机制[J]. 海洋地质与第四纪地质, 27(1):26-33.
    于俊峰, 段如泰. 2008. 琼东南盆地2号断裂东带发育特征及形成机 理[J]. 大地构造与成矿学, 32(3): 293-299.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心