地幔转换带中的水及其地球动力学意义
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
综述了近20年国际上地幔转换带中水的研究进展。前人研究表明,地球深部的水主要以OH-(hy-droxyl)形式存储在名义上无水矿物(NAMs)中。高温高压实验研究表明,地幔转换带中的主要矿物均具有较高的储水能力,且在转换带的温压条件下,其储水能力随着温度的升高而降低,其中瓦兹利石(β-Ol)和林伍德石(γ-Ol)的储水能力为2%~3%,超硅石榴子石(Mj)的储水能力为0.1%左右,据此估算地幔转换带的储水能力约为1.2%~1.91%,是地表水总量的3.9~6.2倍;而转换带除外的上地幔和下地幔主要矿物的含水量或储水能力均小于0.1%,因此与上、下地幔相比,地幔转换带可能是地幔的主要储水库。尽管地幔转换带具有较强的储水能力,但对地幔转换带的实际含水量还存在干、湿两方面的地质和地球物理证据和争议。地幔转换带中的水会对转换带中一系列的过程产生重要影响,当水含量增加时,橄榄石(Ol)向β-Ol、γ-Ol分解以及超硅石榴石的分解反应分别向低压、高压和低压方向迁移,从而由橄榄石向β-Ol和γ-Ol分解两个相变反应界定的转换带宽度也会增加;水还会使地幔深部的部分熔融温度降低,熔体的密度降低;同时,水的加入可以很好地解释地幔岩"pyrolite"模型在410km不连续面处产生的与地震波测量不相符突变,也可以解决全地幔对流模式所不能解释的地幔成分分层问题。因此,深入研究和探讨转换带中的水对地球深部动力学过程的影响,包括中国东部地区受太平洋板块深俯冲作用的影响,均具有重要的约束和研究意义。
This article presents an overview on progress in the studies of water in mantle transition zone during the past two decades.It has been shown that water in the Earth's deep interior is stored in nominal anhydrous minerals (NAMs) in the form of OH-(hydroxyl).HP/HT experiments revealed high solubility of hydroxyl in the minerals of mantle transition zone,which decreases with increasing temperature.The solubility of hydroxyl is up to 2%-3% in β-and γ-olivine,and about 0.1% in majorite.So we can estimate that the mantle transition zone can dissolve 1.2%-1.91% water,about 3.9-6.2 times of the water in ocean.The mantle transition zone is potentially the largest water reservoir in the mantle because the water solubility of the upper mantle (excluding the transition zone) and the lower mantle is not more than 0.1%.However,high water solubility may not lead to high water contents in the transition zone.A hydrous and dry transition zone have been argued and supported by various pieces of geological and geophysical evidence.If mantle transition zone is hydrous,many processes in deep Earth can be influenced.Under hydrous conditions,the pressure will be lower for α to β and post-garnet transitions and higher for post-spinel transition compared with anhydrous conditions,resulting in a thicker mantle transition zone.Water can also lower the temperature of partial melting and increase the degree of melting.A hydrous mantle transition zone can also well explain the sharp "410 km" seismic discontinuity,the chemical difference between ocean island basalts (OIB) and mid-ocean ridge basalts (MORB).The studies of the water in transition zone are of great importance for a better understanding of many geodynamic processes in the deep interior of the Earth including the deep subduction in Eastern China.
引文
[1]Smyth J R,Frost DJ.The effect of water onthe410kmdis-continuity:An experi mental study[J].Geophysical Research Letters,2002,29.doi:10.1029/2001GL014418.
    [2]Ohtani E,Litasov K D.The effect of water on mantle phase transitions[J].Reviews in Mineralogy&Geochemistry,2006,62:397-420.
    [3]Zhang J,Green H W,Bozhilov K,et al.Faultinginduced by precipitation of water at grain boundariesin hot subducting o-ceanic crust[J].Nature,2004,428:633-636.
    [4]Inoue T,Weidner DJ,Northrup P A,et al.Elastic proper-ties of hydrous ringwoodite(γ-phase)in Mg2Si O4[J].Earth and Planetary Science Letters,1998,160(1/2):107-113.
    [5]Frost D J.Experi mental determination of the effect of H2O on the410kmseismic discontinuity[J].Earth and Planetary Science Letters,2007,256(1/2):182-195.
    [6]Wang D,Mookherjee M,Xu Y,et al.The effect of water on the electrical conductivity of olivine[J].Nature,2006,443:977-980.
    [7]Martin R F,Donnay G.Hydroxyl in the mantle[J].Ameri-can Mineralogist,1972,57:554-570.
    [8]Keppler H,Bolfan-Casanova N.Thermodynamics of water solubility and partitioning[J].Reviewsin Mineralogy&Geo-chemistry,2006,62:193-230.
    [9]Rauch M,Keppler H.Water solubilityin orthopyroxene[J].Contributions to Mineralogy and Petrology,2002,143(5):525-536.
    [10]Koch-Muller M,Dera P,Fei Y,et al.OH-in synthetic and natural coesite[J].American Mineralogist,2003,88(10):1436-1445.
    [11]Smyth J R.Hydrogenin high pressure silicate and oxide min-eral structures[J].Reviews in Mineralogy&Geochemistry,2006,62:85-115.
    [12]O Neill B,Bass J D,Rossman G R.Elastic properties of hydrogrossular garnet andi mplications for water in the upper mantle[J].Journal of Geophysical Research,1993,98:20031-20037.
    [13]Withers A C,Wood B J,Carroll M R.The OHcontent of pyrope at high pressure[J].Chemical Geology,1998,147(1/2):161-171.
    [14]Mosenfelder J L.Pressure dependence of hydroxyl solubility in coesite[J].Physics and Chemistry of Minerals,2000,27(9):610-617.
    [15]Rossman G R.Analytical methods for measuring water in Norminally Anhydrous Minerals[J].Reviews in Mineralogy&Geochemistry,2006,62:1-28.
    [16]Xia Q K,Chen D G,Zhi X C.Research progressin structur-al water in Nominally Anhydrous Mantle Minerals[J].Ad-vances in Earth Science,1999,15(5):452-457(in Chinese).
    [17]Paterson MS.The determination of hydroxyl byinfrared ab-sorptionin quartz,silicate glasses and si milar materials[J].Bulletin de Mineralogie,1982,1:20-29.
    [18]Bell D R,Ihinger P D,Rossman G R.Quantitative analysis of trace OHin garnet and pyroxenes[J].American Mineralo-gist,1995,80(5/6):465-474.
    [19]Bell D R,Rossman G R,Maldener J,et al.Hydroxidein oli-vine:A quantitative determination of the absolute amount and calibration of the IRspectrum[J].Journal of Geophysical Research,2003,108,doi:10.1029/2001JB000679.
    [20]Hauri E,Wang J,Dixon J E,et al.SI MS analysis of vola-tiles in silicate glasses:1.Calibration,matrix effects and comparisons with FTIR[J].Chemical Geology,2002,183:99-114.
    [21]Katayama I,Hirose K,Yuri moto H,et al.Water solubilityin majoritic garnet in subducting oceanic crust[J].Geophysical Re-search Letters,2003,30,doi:10.1029/2003GL018127.
    [22]Inoue T,Yuri moto H,Kudoh Y.Hydrous modified spinel,Mg1.75Si H0.5O4:Anew water reservior in the mantle transi-tion region[J].Geophysical Research Letters,1995,22(2):117-120.
    [23]Bellatreccia F,Della Ventura G,Ottolini L,et al.The quan-titative analysis of OHin vesuvianite:A polarized FTIR and SI MS study[J].Physics and Chemistry of Minerals,2005,32(1):65-76.
    [24]Murakami M,Hirose K,Yuri moto H,et al.Water in Earth s lower mantle[J].Science,2002,295:1185-1187.
    [25]Keppler H,Rauch M.Water solubility in nominally anhy-drous minerals measured by FTIR and1H MAS NMR:The effect of sample preparation[J].Physics and Chemistry of Minerals,2000,27:371-376.
    [26]Smyth J R.β-Mg2Si O4:A potential host for water in the mantle[J]-American Mineralogist,1987,72:1051-1055.
    [27]Kohlstedt D L,Keppler H,Rubie D C.Solubility of water in theα,βandγphase of(Mg,Fe)2Si O4[J].Contributions to Mineralogy and Petrology,1996,123:345-357.
    [28]Kawamoto T,Hervig R L,Holloway J R.Experi mental evi-dence for a hydrous transition zoneinthe early Earth s mantle[J].Earth and Planetary Science Letters,1996,142(3/4):587-592.
    [29]Litasov K,Ohtani E.Stability of various hydrous phases in CMAS pyrolite-H2Osystem up to25GPa[J].Physics and Chemistry of Minerals,2003,30(3):147-156.
    [30]Demouchy S,Deloule E,Frost DJ,et al.Pressure and tem-perature-dependence of water solubility in Fe-free wadsleyite[J].American Mineralogist,2005,90(7):1084-1091.
    [31]Ohtani E.Water in the mantle[J].Elements,2005,1(1):25-30.
    [32]Bolfan-Casanova N,Keppler H,Rubie D C.Water partitio-ning between nominally anhydrous mineralsinthe MgO-Si O2-H2Osystemup to24GPa:I mplications for the distribution of water in the Earth s mantle[J].Earth and Planetary Sci-ence Letters,2000,182(3/4):209-221.
    [33]Litasov K D,Kagi H,Shatskly A,et al.High hydrogen sol-ubility in A1-rich stishovite and water transport in the lower mantle[J].Earth and Planetary Science Letters,2007,262(3/4):620-634.
    [34]Schmidt M W,Poli S.Experi mentally based water budgets for dehydrating slabs and consequences for arc magma genera-tion[J].Earth and Planetary Science Letters,1998,163:361-379.
    [35]Pawley A R,Mc Millan P F,Holloway J R.Hydrogen in stishovite,with i mplications for mantle water content[J].Science,1993,261:1024-1026.
    [36]Ingrin J,Skogby H.Hydrogen in nominally anhydrous up-per-mantle minerals:Concentration levels and i mplications[J].European Journal of Mineralogy,2000,12(3):543-570.
    [37]Yang X Z,Xia Q K,Deloule E,et al.Water in minerals of the continental lithospheric mantle and overlyinglower crust:A comparative study of peridotite and granulite xenoliths fromthe North China Craton[J].Chemical Geology,2008,256(1/2):33-45.
    [38]Kohn S C.Solubility of H2Oin nominally anhydrous mantle minerals using1H MAS NMR[J].American Mineralogist,1996,81(11/12):1523-1526.
    [39]Bolfan-Casanova N,Keppler H,Rubie D C.Water partitio-ning at660kmdepth and evidence for verylow water solubili-ty in magnesiumsilicate perovskite[J].Geophysical Research Letters,2003,30,doi:10.1029/2003GL017182.
    [40]Litasov K,Ohtani E,Langenhorst F,et al.Water solubility in Mg-perovskites and water storage capacity in the lower mantle[J].Earth and Planetary Science Letters,2003,211(1/2):189-203.
    [41]Bolfan-Casanova N,Mackwell S,Keppler H,et al.Pressure dependence of Hsolubilityin magnesiowstite up to25GPa:I mplications for the storage of water in the Earth s lower mantle[J].Geophysical Research Letters,2002,29.doi:10.1029/2001GL014457.
    [42]Anderson D L.New Theory of the Earth[M].Cambridge:Cambridge University Press,2007.
    [43]Wood B J.The effect of H2O on the410-Kilometer seismic discontinuity[J].Science,1995,268:74-76.
    [44]Van Der Meijde M,Marone F,Giardini D,et al.Seismic evi-dence for water deep in Earth s upper mantle[J].Science,2003,300:1556-1558.
    [45]Yusa H,Inoue T,Ohishi Y.Isothermal Compressibility of hydrous ringwoodite andits relation to the mantle discontinu-ities[J].Geophysical Research Letters,2000,27,doi:10.1029/1999GL011032
    [46]Yusa H,Inoue T.Compressibility of hydrous wadsleyite(β-Phase)in Mg2Si O4by high pressure X-ray diffraction[J].Geophysical Research Letters,1997,24:1831-1834.
    [47]Inoue T,Tani moto Y,Irifune T,et al.Thermal expansion of wadsleyite,ringwoodite,hydrous wadsleyite and hydrous ringwoodite[J].Physics of the Earth and PlanetaryInteriors,2004,143/144:279-290.
    [48]Benz H M,Vidale J E.Sharpness of upper-mantle disconti-nuities determined from high-frequency reflections[J].Na-ture,1993,365:147-150.
    [49]Nolet G,Grand S P,Kennett B L N.Seismic heterogeneity in the upper mantle[J].Journal of Geophysical Research,1994,99:23753-23766.
    [50]Inoue T,Wada T,Sasaki R,et al.Water partitioningin the Earth s mantle[J].Physics of the Earth and Planetary Interi-ors,2010(submitted).
    [51]Dai L,Karato S I.Electrical conductivity of wadsleyite at high temperatures and high pressures[J].Earth and Planeta-ry Science Letters,2009,287(1/2):277-283.
    [52]Green H W,Chen W,Brudzinski M.Water is not Recycled into the Deep Mantle in Subducting Lithosphere[C].Ameri-can Geophysical Union,Fall Meeting2008:T13C1966G.
    [53]Sharp T G,Diedrich T,Du Frane W L,et al.The Strong Effect of H2O on Olivine Transformation Kinetics Suggests that Some Subducting Slabs are Dry[C].American Geophysi-cal Union,Fall Meeting2007:DI41B.01S.
    [54]Dixon J E,Leist L,Langmuir C,et al.Recycled dehydrated lithosphere observed in plume-influenced mid-ocean-ridge ba-salt[J].Nature,2002,420:385-389.
    [55]Houston H,Gerald S.Deep Earthquakes Treatise on Geo-physics[M].Amsterdam:Elsevier,2007:321-350.
    [56]Diedrich T,Sharp T G,Leinenweber K,et al.The effect of small amounts of H2O on olivine to ringwoodite transforma-tion growth rates andi mplications for subduction of metasta-ble olivine[J].Chemical Geology,2009,262(1/2):87-99.
    [57]lidaka T,Suetsugu D.Seismological evidence for metastable olivine inside a subducting slab[J].Nature,1992,356:593-595.
    [58]Mosenfelder J L,Marton F C,Ross C R,et al.Experi mental constraints on the depth of olivine metastabilityin subducting lithosphere[J].Physics of the Earth and Planetary Interiors,2001,127:165-180.
    [59]Manthilake MA G M,Matsuzaki T,Yoshino T,et al.Elec-trical conductivity of wadsleyite as a function of temperature and water content[J].Physics of the Earth and Planetary In-teriors,2009,174:10-18.
    [60]Huang X,Xu Y,Karato SI.Water content in the transition zone fromelectrical conductivity of wadsleyite and ringwood-ite[J].Nature,2005,434:746-749.
    [61]Yoshino T,Manthilake M A G M,Matsuzaki T,et al.Dry mantle transition zoneinferredfromthe conductivity of wads-leyite and ringwoodite[J].Nature,2008,451:326-329.
    [62]Kelbert A,Schultz A,Egbert G.Global electromagnetic in-duction constraints ontransition-zone water content variations[J].Nature,2009,460:1003-1006.
    [63]Utada H,Koyama T,Shi mizu H,et al.Asemi-global refer-ence model for electrical conductivity in the mid-mantle be-neath the North Pacific region[J].Geophysical Research Let-ters,2003,30,doi:10.1029/2002GL016092.
    [64]Kuvshinov A.3-D modelling and analysis of Dst C-responses in the North Pacific Ocean region,revisited[J].Geophysical Journal International,2005,160(2):505-526.
    [65]Koyama T,Shi mizu H,Utada H,et al.Water content inthe mantle transition zone beneath North Pacific derived fromthe electrical conductivity anomaly[J].EOS,2004,85(47):T31F-05.
    [66]Ohtani E,Zhao D.The role of water in the deep upper man-tle and transition zone:Dehydration of stagnant slabs and its effects onthe big mantle wedge[J].Russian Geology and Ge-ophysics,2009,50(12):1073-1078.
    [67]Yoshino T,Katsura T,Baba K,et al.Laboratory-based conductivity struture in the mantle transition zone[J].Phys-ics of the Earth and Planetary Interiors,2009(submitted).
    [68]Ohtani E,Litasov K D.The effect of water on mantle phase transitions[J].Reviews in Mineralogy&Geochemistry,2006,62(1):397-420.
    [69]Katsura T,Ito E.The system Mg2Si O4-Fe2Si O4at high pressures and temperatures:Precise determination of stabili-ties of olivine,modified spinel,and spinel[J].Journal of Ge-ophysical Research,1989,94:15663-15670.
    [70]Flanagan M P,Shearer P M.Topography on the410km seismic velocity discontinuity near subduction zones from stacking of sS,sP,and pP precursors[J].Journal of Geo-physical Research,1998,103:21165-21182.
    [71]Flanagan MP,Shearer P M.Global mapping of topography on transition zone velocity discontinuities by stacking SS pre-cursors[J].Journal of Geophysical Research,1998,103:2673-2692.
    [72]Chen J,Inoue T,Yuri moto H,et al.Effect of water on oli-vine-wadsleyite phase boundaryin the(Mg,Fe)2Si O4system[J].Geophysical Research Letters,2002,29.doi:10.1029/2001GL014429.
    [73]Kawamoto T.Hydrous phase stability and partial melt chem-istry in H2O-saturated KLB-1peridotite up to the uppermost lower mantle conditions[J].Physics of the Earth and Plane-tary Interiors,2004,143/144:387-395.
    [74]Higo Y,Inoue T,Irifune T,et al.Effect of water on the spinel-postspinel transformationin Mg2Si O4[J].Geophysical Research Letters,2001,28:3505-3508.
    [75]Litasov K D,Ohtani E,Sano A,et al.Wet subduction ver-sus cold subduction[J].Geophysical Research Letters,2005,32.doi:10.1029/2005GL022921
    [76]Katsura T,Yamada H,Shinmei T,et al.Post-spinel transi-tion in Mg2Si O4determined by highp-Tin situX-ray diffrac-tometry[J].Physics of the Earth and Planetary Interiors,2003,136(1/2):11-24.
    [77]Fei Y,Van Orman J,Li J,et al.Experi mentally determined postspinel transformation boundaryin Mg2Si O4using MgOas aninternal pressure standard and its geophysical i mplications[J].Journal of Geophysical Research,2004,109.doi:10.1029/2003JB002562.
    [78]Litasov K,Ohtani E,Sano A,et al.InsituX-ray diffraction study of post-spinel transformation in a peridotite mantle:I mplicationfor the660kmdiscontinuity[J].Earth and Plane-tary Science Letters,2005,238(3/4):311-328.
    [79]Irifune T,Ringwood A E.Phase transformations in subduc-ted oceanic crust and buoyancy relationships at depths of600-800kmin the mantle[J].Earth and Planetary Science Let-ters,1993,117(1/2):101-110.
    [80]Ringwood A E.Role of the transition zone and660km dis-continuity in mantle dynamics[J].Physics of the Earth and Planetary Interiors,1994,86:5-24.
    [81]Litasov K D,Ohtani E.Phase relations in hydrous MORB at18-28GPa:I mplications for heterogeneity of the lower man-tle[J].Physics of the Earth and Planetary Interiors,2005,150(4):239-263.
    [82]Sano A,Ohtani E,Litasov K,et al.InsituX-ray diffraction study of the effect of water on the garnet-perovskite transfor-mationin MORB and i mplications for the penetration of oce-anic crust into the lower mantle[J].Physics of the Earth and Planetary Interiors,2006,159(1/2):118-126.
    [83]Hirose K,Kawamoto T.Hydrous partial melting of lherzo-lite at1GPa:The effect of H2O on the genesis of basaltic magmas[J].Earth and Planetary Science Letters,1995,133(3/4):463-473.
    [84]Hirth G,Kohlstedt D L.Water in the oceanic upper mantle:I mplications for rheology,melt extraction and the evolution of the lithosphere[J].Earth and Planetary Science Letters,1996,144(1/2):93-108.
    [85]Litasov K,Ohtani E.Phase relations and melt compositions in CMAS-pyrolite-H2Osystem up to25GPa[J].Physics of the Earth and PlanetaryInteriors,2002,134(1/2):105-127.
    [86]Zhao D.Global tomographic i mages of mantle plumes andsubducting slabs:Insight into deep Earth dynamics[J].Physics of the Earth and Planetary Interiors,2004,146(1/2):3-34.
    [87]Sakamaki T,Suzuki A,Ohtani E.Stability of hydrous melt at the base of the Earth s upper mantle[J].Nature,2006,439:192-194.
    [88]Matsukage K N,Jing Z,Karato S-I.Density of hydrous sili-cate melt at the conditions of Earth s deep upper mantle[J].Nature,2005,438:488-491.
    [89]Alex Song T R,Hel mberger D V,Grand S P.Low-velocity zone atop the410kmseismic discontinuity in the northwest-ern United States[J].Nature,2004,427:530-533.
    [90]Revenaugh J,Sipkin S A.Seismic evidence for silicate melt a-top the410km mantle discontinuity[J].Nature,1994,369:474-476.
    [91]Suzuki A,Ohtani E.Density of peridotite melts at high pres-sure[J].Physics and Chemistry of Minerals,2003,30(8):449-456.
    [92]Ringwood A E.Composition and Petrology of the Earth s Mantle[M].New York:McGraw-Hill,1975.
    [93]Cammarano F,Goes S,Deuss A,et al.Is a pyrolitic adiabat-ic mantle compatible with seismic data[J]-Earth and Planeta-ry Science Letters,2005,232(3/4):227-243.
    [94]Shearer P M,Flanagan M P.Seismic velocity and density jumps across the410-and660-kilometer discontinuities[J].Science,1999,285:1545-1548.
    [95]Duffy T S,Zha C S,Downs R T,et al.Elasticity of forster-ite to16GPa and the composition of the upper mantle[J].Nature,1995,378:170-173.
    [96]Li B,Liebermann R C,Weidner DJ.Elastic moduli of wads-leyite(β-Mg2Si O4)to7gigapascals and873kelvin[J].Sci-ence,1998,281:675-677.
    [97]Zha C S,Duffy TS,Downs R T,et al.Sound velocity and e-lasticity of single-crystal forsterite to16GPa[J].Journal of Geophysical Research,1996,101:17535-17545.
    [98]Anderson D L,Bass J D.Transition region of the Earth s up-per mantle[J].Nature,1986,320:321-328.
    [99]Anderson D L,Bass J D.Mineralogy and composition of the upper mantle[J].Geophysical Research Letters,1984,11:637-640.
    [100]Irifune T,Higo Y,Inoue T,et al.Sound velocities of ma-jorite garnet and the composition of the mantle transition re-gion[J].Nature,2008,451:814-817.
    [101]Ita J,Stixrude L.Petrology,elasticity,and composition of the mantle transition zone[J].Journal of Geophysical Re-search,1992,97:6849-6866.
    [102]Hof mann A W.Mantle geochemistry:The message fromo-ceanic volcanism[J].Nature,1997,385:219-229.
    [103]Van Der Hilst R D,Widiyantoro S,Engdahl E R.Evidence for deep mantle circulation fromglobal tomography[J].Na-ture,1997,386:578-584.
    [104]Morgan WJ.Convection plumes in the lower mantle[J].Nature,1971,230:42-43.
    [105]Bercovici D,Karato S-I.Whole-mantle convection and the transition-zone water filter[J].Nature,2003,425:39-44.
    [106]Huang J,Zhao D.High-resolution mantle tomography of China and surrounding regions[J].Journal of Geophysical Research,2006,111(B9):B09305.
    [107]Chen L,Ai Y.Discontinuity structure of the mantle transi-tion zone beneath the North China Craton from receiver function migration[J].Journal of Geophysical Research,2009,114.doi:10.1029/2008JB006221.
    [108]Ai Y,Zheng T,Xu W,et al.Acomplex660km disconti-nuity beneath Northeast China[J].Earth and Planetary Sci-ence Letters,2003,212(1/2):63-71.
    [109]Ai Y,Zheng T.The upper mantle discontinuity structure beneath Eastern China[J].Geophysical Research Letters,2003,30.doi:10.1029/2003GL017678.
    [110]Chen L,Zheng T,Xu W.Receiver function migration i m-age of the deep structure in the Bohai Bay Basin,Eastern China[J].Geophysical Research Letters,2006,33.doi:10.1029/2006GL027593.
    [111]Vacher P,Mocquet A,Sotin C.Computation of seismic profiles from mineral physics:Thei mportance of the non-ol-ivine components for explaining the660km depth disconti-nuity[J].Physics of the Earth and Planetary Interiors,1998,106(3/4):275-298.
    [112]Akaogi M,Ito E,Navrotsky A.Olivine-modified spinel-spi-nel transitionsinthe system Mg2Si O4-Fe2Si O4:Calori metric measurements,thermochemical calculation,and geophysical application[J].Journal of Geophysical Research,1989,94:15,671-615,685.
    [113]Kirby S H,Stein S,Okal E A,et al.Metastable mantle phase transformations and deep earthquakes in subducting oceanic lithosphere[J].Reviews of Geophysics,1996,34(2):261-306.
    [114]Litasov K,Ohtani E,Suzuki A,et al.Absence of density crossover between basalt and peridotite in the cold slabs passing through660km discontinuity[J].Geophysical Re-search Letters,2004,31,doi:0.1029/2004GL021306.
    [16]夏群科,陈道公,支霞臣.名义上无水的地幔矿物中结构水的研究进展[J].地球科学进展,1999,15(5):452-457.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心