前寒武纪与微生物席相关的粉砂岩岩墙——以天津蓟县古元古界串岭沟组为例
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
在天津蓟县剖面古元古界串岭沟组下部的环潮坪相粉砂质泥页岩细粒沉积中,发育许多粉砂岩岩墙。由于该粉砂岩岩墙在层面上和层内具有特别的形态,因而对其成因具有多种解释:在层面上呈纺锤状粉砂岩裂缝以及在层内呈砂质充填管形态,从而被认为是最古老的后生动物遗迹化石;在层内呈弯弯曲曲的粉砂岩岩墙以及明显的流体化作用特点,所以又被解释为地震振荡作用形成的液化砂岩脉。显微镜下,这种岩墙具有明显的富残余有机质构成的边界,以及由粉砂颗粒相对聚集所显示出的明显的流体化作用特征;再加上与这种粉砂岩岩墙共生的沉积构造主要是皱饰构造,局部还发育变余波痕,由此表明沉积面上曾经发育过微生物席。因此,这种粉砂岩岩墙应该解释为沉积面在曾经被微生物席封闭的情况下,相对富含有机质的细粒沉积物在早期成岩作用过程中所发生的脱气作用和脱水作用的产物,最终可以归为由微生物形成的沉积构造的一种类型。
There are many silty dykes in peritidal silty muddy shales of the lower part of the Paleoproterozoic Chuanlinggou Formation at Jixian section in Tianjin.Particular configurations on bedding planes and on the surface perpendicular to the bedding planes lead to different explanations for the genesis of these silty dykes:(1)they are considered as the oldest trace fossils of metazoan according to the spindle-crack of siltstones on the bedding plane and the sand-filling tube configurations on the surface perpendicular to the bedding plane;(2)they are considered as the liquefied sand-veins induced by earthquake according to the sinuous configuration of siltstone dykes on the surface perpendicular to the bedding plane and the obvious liquation feature.Several features indicate that these silty dykes were generated by the degassing and dewatering processes in the early diagenesis under the condition that the sedimentary surface was sealed by microbial mats,and can further be grouped into the microbial induced sedimentary structure(MISS).These features include:(1)the clear boundary being enriched with residue organic substance and the obvious fluidization feature shown by the relative accumulation of silty grains under the petrographic microscope;(2)the accompanied wrinkle structure and the palimpsest ripples which indicate the development of microbial mats on the sedimentary surface.
引文
陈晋镳,武铁山.1997.华北区区域地层[M].湖北武汉:中国地质大学出版社,20-44.
    旷红伟,孟祥化,葛铭.2006.臼齿碳酸盐岩成因的讨论:以吉辽地区为例[J].古地理学报,8(1):63-74.
    刘洪福,刘池阳.1992.蓟县长城系串岭沟组中发现最古老的后生动物遗迹化石[J].西北大学学报(自然科学版),22:208.
    陆松年,李惠民.1991.蓟县长城系大红峪组火山岩中单颗锆石U-Pb法准确定年[J].地球学报,22(1):137-145.
    陆松年,张学琪,黄承义,等.1989.蓟县—平谷一带长城系年龄数据新知及年代格架讨论[J].中国地质科学院天津地质矿产研究所所刊,23:11-21.
    梅冥相.2005.天津蓟县剖面中元古代高于庄组臼齿状构造的层序地层位置及其成因的初步研究[J].古地理学报,7(4):437-447.
    梅冥相.2007.前寒武纪“臼齿状构造谜”的一些认识:来自天津蓟县剖面中元古代高于庄中的一些信息[J].古地理学报,9(6):597-610.
    梅冥相,高金汉,孟庆芬.2006.从席底构造到第五类原生沉积构造[J].现代地质,20(3):413-422.
    梅冥相,孟庆芬,刘智荣.2007.微生物形成的原生沉积构造研究进展综述[J].古地理学报,9(4):353-367.
    梅冥相,周洪瑞,杜本明,等.2000.天津蓟县中新元古代沉积层序的初步研究:前寒武纪(1800Ma-600,Ma)一级层序划分及其与显生宙的一致性[J].沉积与特提斯地质,20(4):48-59.
    乔秀夫,宋天锐,高林志,等.2006.地层中地震记录(古地震)[M].北京:地质出版社,1-263.
    乔秀夫,高林志.2007.燕辽裂隙槽中元古代古地震与古地理[J].古地理学报,9(4):337-352.
    宋天锐.2007.北京十三陵地区中元古界长城系沉积相标志及沉积环境模式[J].古地理学报,9(5):461-472.
    宋天锐,高健.1985a.这是中国发现的最古老的后生动物化石吗-[J].科学通报,12(2):926-928.
    宋天锐,高健.1985b.最古老的后生动物化石——对北京十三陵前寒武纪常州沟组充填管构造的探讨[J].沉积学报,3(2):85-96.
    张录易,华洪.2003.长城系中宏观遗迹化石真假初探[M].见:郝东恒,刘亚民,冯玉莲主编.探索生物起源—庆贺杜汝霖教授荣膺李四光地质科学奖.北京:地质出版社,205-210.
    朱士兴,邢裕盛,张鹏远.1994.华北地台中、上元古界生物地层序列[M].北京:地质出版社,1-278.
    Anand A,Jain A K.1987.Earthquakes and deformational structures(seismites)in Holocene sediments from the Himalayan-AndamanArc[J].Tectonophysics,133:105-120.
    Awramik S M,Sprinkle J.1999.Proterozoic stromatolites:The first ma-rine evolutionary biota[J].Historical Biology,13:241-253.
    Banerjee S,Jeevankumar S.2005.Microbial originated wrinkle struc-tures on sandstone and their stratigraphic context:PalaeoproterozoicKoldaha Shale,central India[J].Sedimentary Geology,176:211-224.
    Baas J H.2003.Ripple,ripple mark,ripple structure[A].In:Middle-ton G V,Church M J,Coniglio M,et al(eds).Encyclopedia ofSedimentments and Sedimentary Rocks[M].Dordrecht,Boston andLondon:Kluwer Academic Publishers,565-567.
    Bouougri E,Porada H.2002.Mat-related sedimentary structures in Neo-proterozoic peritidal passive margin deposits of the West African Cra-ton(Anti-Atlas,Morocco)[J].Sedimentary Geology,153:85-106.
    Catuneanu O,Martins-Neto MA,Eriksson P G.2005.Precambrian se-quence stratigraphy[J].Sedimentary Geology,176:67-95.
    Eriksson P G,Catuneanu O,Sarkar S,et al.2005a.Patterns of sedi-mentation in the Precambrian[J].Sedimentary Geology,176:17-42.
    Eriksson P G,Catuneanu O,Nelson D R,et al.2005b.Controls onPrecambrian sea-level change and sedimentary cyclicity[J].Sedi-mentary Geology,176:43-65.
    Furniss G,Rittle J F,Winston D.1998.Gas bubble and expansioncrack origin of“MT”structure from the Late Precambrian Belt-Pur-cell Supergroup[J].Journal of Sedimentary Research,68:104-114.
    Gerdes G,Klenek T,Noffke N.2000.Microbial signatures in peritidalsiliclastic sediments:A catalogue[J].Sedimentology,47:279-308.
    Gradstein F M,Ogg J G,Smith A G,et al.2004.A new geologicalscale with special reference to Precambrian and Neogene[J].Epi-sodes,27:83-100.
    Grotzinger J P,James N P.2000.Precambrian Carbonates:Evolution ofUnderstanding[M].In:Grotzinger J P,James N P(eds).Carbon-ate Sedimentation and Diagenesis in the Evolving PrecambrianWorld.SEPMSpecial Publication,67,3-22.
    Hagadorm J W,Pflüger F,Bottjer D J.1999.Online:Unexplored mi-crobial world[J].Palaios,14:1-2.
    Hagadorm J W,Bottjer D J.1997.Wrinkle structures:Microbially me-diated sedimentary structures in siliclastic settings at the Proterozoic-Phanerozoic transition[J].Geology,25:1047-1050.
    James N P,Narbonne G M,Sherman AG.1998.MTcarbonates:Shal-low subtidal facies of the Mid to Late Proterozoic[J].Journal ofSedimentary Research,68:716-722.
    Johnson HD,Baldwin J H.1996.ShallowClastic Seas[M].In:ReadingHG(ed).Sedimentary Environment:Processes,Facies and Stratigraphy(Third edition).Oxford,UK:Blackwell Science,232-280.
    Kah L C,Riding R.2007.Mesoproterozoic carbon dioxide levels in-ferred from calcified cyanobacteria[J].Geology,35:799-802.
    Kal L C,Knoll AH.1996.Microbenthic distribution of Proterozoic tidalflats:Environmental and taphonomic considerations[J].Geology,24:79-82.
    Kusky TM,Li J.2003.Paleoproterozoic tectonic evolution of the NorthChina[J].Journal of Asian Earth Science,22:383-397.
    Lamb D M,Awaramik S M,Zhu S.2007.Palaeoproterozoic compres-sion-like structures from the Changzhougou Formation,China:Eu-karyotes or clasts-[J].Precam.Res.,154:235-274.
    Lu S,Yang C,Zhu S.1996.The Precambrian Continental Crust fromEastern Hebei to Jixian,Tianjin,Fielddrip Guidebook T105[C].In:Proceeding of the30th International Geological Congress.Bei-jing:Geological Publishing House,T105.13-T105.19.
    McManus J,Bajabaa S.1998.The importance of air escape processes inthe formation of dish-and pillar and teepee structures within modernand Precambrian fluvial deposits[J].Sedimentary Geology,120:337-343.
    Newman D K,Banfield J F.2002.Geocmicrobiology:How molecular-scale interactions underpin biogeochemical system[J].Sciences,296:1071-1077.
    Noffke N.1998.Multidirected ripple marks rising from biological andsedimentological processes in modern lower supratidal deposits(Mel-lum Island,southern North Sea)[J].Geology,26:879-882.
    Noffke N,Gerdes G,Klenke T,et al.2001.Microbially induced sedi-mentary structures:A new category within the classification of pri-mary sedimentary structures[J].Journal of Sedimentary Research,71(5):649-656.
    Noffke N,Gerdes G,Klenke T.2003.Benthic cyanobacteria and theirinfluence on the sedimentary dynamics of peritidal system(siliclas-tic,evaporitic salty,and evaporitic carbonatic)[J].Earth-ScienceReviews,62:163-176.
    Pettijohn F J,Potter P E.1964.Atlas and Glossary of Primary Sedimen-tary Structure[M].Berlin:Springer-Verlag,1-370.
    Pflüger F.1999.Matground structures and redox facies[J].Palaios,14:25-39.
    Pollock MD,Kah L C,Bartley J K.2006.Morphology of MTstructuresin Precambrian carbonates:Influence of substrate rheology and im-plications for genesis[J].Journal of Sedimentary Research,76:310-323.
    Porada HP,Bouougri E H.2007.Wrinkle structure:A critical review[J].Earth-Science Review,81:199-215.
    Pratt B R.1998.Syneresis cracks:Subaqueous shrinkage in argillaceoussediments caused by earthquake-induced dewatering[J].Sedimen-tary Geology,117:1-10.
    RidingR.2000.Microbial carbonates:The geological record of calcified bac-terial-algal mats and biofilms[J].Sedimentology,47(1):179-214.
    Riding R.2006.Microbial carbonate abundance compared with fluctua-tions in metazoan diversity over geological time[J].SedimentaryGeology,185:229-238.
    Sarker S,Banerjee S,Eriksson P G,et al.2005.Microbial mat controlon siliclastic Precambrian sequence stratigraphic architecture:exam-ple from India[J].Sedimentary Geology,176:195-209.
    Schieber J.1998.Possible indicators of microbial mat deposits in shalesand sandstones:examples from the Mid-Proterozoic Belt Superg-roup,Montana USA[J].Sedimentary Geology,120:105-124.
    Schieber J.1999.Microbial mats in terrigenous clastics:The challengeof identification in the rock records[J].Palaios,14:3-12.
    Schieber J.2004.Microbial Mats in the Siliclastic Rock Record:ASum-mary of Diagnostic Features[M].In:Errickson P G,Alterman W,Nelson D R,et al(eds).The Precambrian Earth:Tempos and E-vents.Amsterdam:Elsevier,663-673.
    Seilacher A,Pflüger F.1994.From Biomats to Benthic Agriculture:ABiohistoric Revolution[M].In:Krumbein W E,Paterson D M,Stal L J(eds).Biostabilization of Sediments.Oldenberg:Bib-liotheks und Informationssystem der Carl von Ossietzky UniversitatOldenberg,97-105.
    Seilacher A.1999.Biomat-related lifestyles in the Precambrian[J].Palaios,14:86-93.
    Tucker M E.2003.Sedimentary Rocks in the Field(Third edition)[M].Chichester UK:John Wiley and Sons Ltd,1-229.
    Warren L A,Kauffman M E.2003.Microbial geoengineers[J].Sci-ences,299:1027-1029.
    Woese C R.1998.Default taxonomy:Ernst Mayr,s viewof the microbialworld[J].Proceeding of National Academy of Sciences,USA,95:11034-11046.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心