近岸水平场地液化侧向大变形机理及软化模量分析方法
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
本文依据震害现象和实验探讨近岸水平场地地面液化侧向大变形机理,改进现有软化模量分析技术,给出一套地面液化侧向大变形的分析方法。近岸水平场地侧向大变形机理因地基中孔隙水压力升高、土体模量衰减、土骨架变软使偏应变得到充分发展所致,其水平永久侧移可用从底部到顶部呈增加形式的整体变形描述。利用本文方法,对1995年阪神地震中近岸沉箱岸壁和土体液化侧向大变形进行了数值模拟,结果与震后实测结果和试验结果在主要特征上一致,说明改进的软化模量法可以用于地面液化侧向大变形的分析。
Based on the post-earthquake investigation and tests, the mechanism of the liquefaction-induced lateral spreading of ground near the river bank or seashore is analyzed and by modifying the existing softening modulus model, an analytical approach for evaluating the liquefaction-induced lateral spreading of the ground near the river bank or seashore is presented. The mechanism for the liquefaction-induced lateral spreading of ground near the river bank or seashore is that the deviatoric strain of soils fully develops resulting from the reduced modulus of the soil due to the liquefaction and this permanent displacement is an overall form with the decreasing of the depth. Simulation for the damage phenomenain the 1995 Hyogoken-Nambu earthquake is performed and the results indicate that the approach presented in the paper is consistent with the post-earthquake investigation and the shaking table tests in many basic aspects.
引文
[1]YoshidaM,MiyajimaM,KitauraM.Characteristicsofliquefiedgroundflowatplanereclaimedlandduringthe1995KobeEarthquke[A].12th WorldConferenceonEarthquakeEngineering[C].Auckland,2000.
    [2]IshiharaK,YoshidaK,KatoM.Grounddeformationcharacteristicscausedbylateralspreadingduringthe1995Hanshin AwajiEarthquake[A].Proceedings,6thJapan U.S.WorkshoponEarthquakeResistantDesignofLifelineFacilitiesandCountermeasuresforSoilLiquefaction[C].Na tionalCenterforEarthquakeEngineeringResearch,TechnicalReportNCEER-94-0026,1994.221~242.
    [3]SawadaS,OzutsumiO,IaiS.Analysisofliquefactioninducedresidualdeformationfortwotypesofquaywalls:analysisbyFLIP[A].12th WorldConferenceonEarthquakeEngineering[C].Auckland,2000.
    [4]YasudaS,Nagase,HKikuH,etal.Asimplifiedprocedurefortheanalysisofthepermanentgrounddisplacement[A].Proceedings,3rdJapan U.S.WorkshoponEarthquakeResistantDesignofLifelineFacilitiesandCountermeasuresforSoilLiquefaction[C].NationalCenterforEarth quakeEngineeringResearch,TechnicalReportNCEER-91-0001:225-236,1991.
    [5]IaiS,SuganoT.Shaketabletestingonseismicperformanceofgravityquaywalls[A].12thWorldConferenceonEarthquakeEngineering,Auck land,2000.
    [6]高玉峰,刘汉龙.地震液化引起的地面大位移研究进展[J].岩土力学,2000,21(3):294~298
    [7]刘汉龙.大型沉箱式码头岸壁地震反应分析[J].岩土工程学报,1998,20(2):26~30
    [8]袁晓铭,孙锐,孟上九.软弱地基土上建筑物不均匀震陷机理研究[J].土木工程学报,2004,37(2):67~72.
    [9]孟上九,袁晓铭,孙锐.建筑物不均匀震陷机理的振动台实验研究[J].岩土工程学报,2002,24(6):747~751.
    [10]孟上九,袁晓铭.建筑物不均匀震陷影响因素研究[J].地震工程与工程振动,2004,24(1):111~116.
    [11]景立平,王绍博,张荣祥.砂土液化诱发的地面侧移机理研究[J].地震工程与工程振动,1996,16(3):128~136.
    [12]SunR,YuanX.TheFormulaforevaluatingporewaterpressureofsaturatedsandinanisotropicconsolidationunderearthquakeloading[A].Proc.the3rdInternationalConferenceonContinentalEarthquakes[C].Beijing,2004.
    [13]SherifMA,IshibashiI,TtsuchiyaC.Pore pressurePredictionduringearthquakeloadings[J].SoilandFoundation,1978,18(4):19~29.
    [14]谢君斐,石兆吉,郁寿松,等.液化危害性分析[R].哈尔滨:国家地震局工程力学研究所研究报告,1987.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心