断陷湖盆洼陷带重力流沉积特征与模式:以南堡凹陷东部东营组为例
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
利用岩心、粒度、测井信息和重力流沉积理论,系统研究了南堡凹陷东部洼陷带东营组重力流沉积特征和沉积模式。该区重力流沉积砂岩常夹于灰色、灰黑色泥岩中,砂岩相发育,其中正递变层理(含砾)中-细砂岩相(S-3)、粉砂岩相(S-4)和块状层理中-细砂岩相(S-2)发育层数最多,块状层理含砾砂岩相(S-1)次之;S-2沉积厚度最大,S-1和S-3次之。按支撑和沉积机制,将本区重力流分为浊流、砂质碎屑流、颗粒流和液化流,其中砂质碎屑流以基质支撑、冻结块状沉积为特征。不同重力流发育程度有明显差异。从砂岩层数看,浊流最多,砂质碎屑流次之,颗粒流和液化流最少;从单期沉积厚度看,砂质碎屑流最大,平均为1.17m,浊流沉积最小,仅平均为0.25m。为了回避取心的局限性、弱化重力流成因,突出具有油气储集意义的砂层概念,开展了测井岩性解释,结果表明该区重力流沉积为细砂岩或粉砂岩,单层平均厚度2.94m,最大厚度可达9.5m,其中单井中厚度在3m以上的砂体可达22层、累积达107.5m。本区重力流沉积为滑塌成因,除了(扇)三角洲前缘斜坡的自然滑塌外,断层(地震)活动或间歇式火山喷发是其关键的触发机制;断层活动除了提供滑塌的动力外,还影响着其堆积场所和沉积的结构。
Sedimentary characteristics and depositional model of Dongying Formation in depressed belt of eastern Nanpu Depression were studied based on core,grain size and logging data.The gravity flow sediments,characterized by richness of sandstone lithofacies and lack of conglomerate ones,always interbedded with gray or deep-gray mudstone.According to beds'number,normal graded bedding sandstone(S-3),siltstone(S-4) and massive bedding sandstone(S-2)were the most developed ones,and the massive bedding pebbled sandstone(S-1)took the second place.However,S-2takes the first place in thickness,S-1and S-3took the second one.Considering supporting and depositional mechanism,sediment gravity flows in studied area may be divided into four types,i.e.,turbidity flow,sandy debris current,grain current and liquefied current,and specially,sandy debris current was supported by matrix and deposited by frozen massive mode.Every gravity flow developed differently on large scale.According to sandstone beds'number,turbidity flow took the first place and sandy debris flow the second one.Considering deposition thickness of single gravity flow,sandy debris flow took the first one with an average of 1.17m,and the turbidity flow deposit took the last one with an average of 0.25mwhich showing turbidity flow usually was very thin.In order to reduce the limit of cores and ignore the effect of different flow types on sandstone size,which decided their importance for hydrocarbon exploration,logging data were used in litho-interpretation.Interpretation results showed that the gravity flows' sediments included fine sandstone and siltstone with an average thickness of 2.94mand a maximum thickness of 9.5mfor a single bed.Among them,there were 22single sandstone beds with over 3mthickness,which had a total thickness of 107.5m.Basically,the sediment gravity flows were sprung by sediments'slump on the delta front slope in studied area.During the processes,earthquake movements and intermittent volcano eruptions,besides natural sediments slump when the angle of delta front slope overrun the critical slope angel,brought the key dynamical mechanisms.Besides,faulting played an important role not only in providing accumulation space but also in deciding the depositional architecture.
引文
[1]Kuenen P H,Migliorini C I.Turbidity currents as a cause ofgraded bedding[J].The Journal of Geology,1950,58(2):91-127.
    [2]Bouma A H.Sedimentology of Some Flysch Deposits:Agraphic Approach to Facies Interpretation[M].Amsterdam:Elsevier,1962:1-168.
    [3]李云,郑荣才,朱国金,等.沉积物重力流研究进展综述[J].地球科学进展,2011,26(2):157-165.
    [4]汪品先.深海沉积与地球系统[J].海洋地质与第四纪地质,2009,29(4):1-11.
    [5]付锁堂,邓秀芹,庞锦莲.晚三叠世鄂尔多斯盆地湖盆沉积中心厚层砂体特征及形成机制分析[J].沉积学报,2010,28(6):1081-1089.
    [6]李相博,陈启林,刘化清,等.鄂尔多斯盆地延长组3种沉积物重力流及其含油气性[J].岩性油气藏,2010,22(3):16-21.
    [7]邹才能,赵政璋,杨华,等.陆相湖盆深水砂质碎屑流成因机制与分布特征:以鄂尔多斯盆地为例[J].沉积学报,2009,27(6):1065-1075.
    [8]王颖,王晓州,王英民,等.大型坳陷湖盆坡折带背景下的重力流沉积模式[J].沉积学报,2009,27(6):1076-1083.
    [9]李顺明,沈平平,严耀祖.沾化凹陷桩西油田古近系东营组重力流水道的沉积特征及形成条件[J].沉积学报,2010,28(1):83-90.
    [10]耳闯,顾家裕,牛嘉玉,等.重力驱动作用:滦平盆地下白垩统西瓜园组沉积时期主要的搬运机制[J].地质论评,2010,56(3):312-320.
    [11]耳闯,牛嘉玉,顾家裕,等.辽河双台子构造带沙三段主要的沉积相类型与成因分析[J].地质学报,2011,85(6):1028-1037.
    [12]王德坪.湖相内成碎屑流的沉积及形成机理[J].地质学报,1991,65(4):299-316.
    [13]王德坪,刘守义.东营盆地渐新世早期前三角洲缓坡区的泥石流砂质碎屑沉积[J].沉积学报,1987,5(4):14-24.
    [14]王华,姜华,林正良,等.南堡凹陷东营组同沉积构造活动性与沉积格局的配置关系研究[J].地球科学与环境学报,2011,33(1):70-77.
    [15]林畅松,刘景彦,胡博.构造活动盆地沉积层序形成过程模拟:以断陷和前陆盆地为例[J].沉积学报,2010,28(5):868-874.
    [16]鲜本忠,王永诗,周廷全,等.断陷湖盆陡坡带砂砾岩体分布规律及控制因素:以渤海湾盆地济阳坳陷车镇凹陷为例[J].石油勘探与开发,2007,34(4):429-436.
    [17]Dott R H Jr.Dynamics of subaqueous gravity depositionalprocesses[J].AAPG Bulletin,1963,47(1):104-128.
    [18]Middleton G V,Hampton M A.Subaqueous sediment trans-port and deposition by sediment gravity flows[M]∥Stanly DJ,Swift D J P.Marine Sediment Transport and Environmen-tal Management.New York:Wiley,1976:197-218.
    [19]Middleton G V,Hampton M A.Sediment gravity flows:Mechanics of flow and deposition[M]∥Middleton G V,Bou-ma A H.Turbidites and Deep-water Sedimentation.Los An-geles:Pacific Section of the Society of Economic Paleontolo-gists and Mineralogists,1973:1-38.
    [20]Shanmugam G.High density turbidity currents:Are theysandy debris flows[J]?Journal of Sedimentary Research,1996,66(1):2-10.
    [21]李林,曲永强,孟庆任,等.重力流沉积:理论研究与野外识别[J].沉积学报,2011,29(4):677-688.
    [22]Dasgupta P.Sediment gravity flow:The conceptual problems[J].Earth-Science Reviews,2003,62(2):265-281.
    [23]Sanders J E.Primary sedimentary structures and their hydro-dynamic interpretation[M]∥Middleton G V.Primary Sedi-mentary Structures and Their Hydrodynamic Interpretation.Tulsa:Society of Economic Paleontologists and MineralogistsSpecial Publication,1965:192-219.
    [24]Van der Lingen G J.The turbidite problem[J].New ZealandJournal of Geology and Geophysics,1969,12(1):7-50.
    [25]Shanmugam G.50years of the turbidite paradigm(1950s—2000s):Deep-water processes and facies models:A criticalperspective[J].Marine and Petroleum Geology,2000,17(2):285-342.
    [26]Shanmugam G.Ten turbidite myths[J].Earth-Science Re-views,2002,58(3/4):311-341.
    [27]Arnott R W C,Hand B M.Bedforms,primary structuresand grain fabric in the presence of suspended sediment rain[J].Journal of Sedimentary Petrology,1989,59(6):1062-1069.
    [28]Hampton M.Competence of fine-grained debris flows[J].Journal of Sedimentary Research,1975,45(4):834-844.
    [29]李祥辉,王成善,金玮,等.深海沉积理论发展及其在油气勘探中的意义[J].沉积学报,2009,27(1):77-86.
    [30]Shanmugam G,Moiola R J.Reinterpretation of depositionalprocesses in a classic flysch sequence(Pennsylvanian JackforkGroup),Ouachita Mountains,Arkansas and Oklahoma[J].AAPG Bulletin,1995,79(5):672-695.
    [31]Shanmugam G,Moiola R J.Reinterpretation of depositionalprocesses in a classic flysch sequence(Pennsylvanian JackforkGroup),Ouachita Mountains,Arkansas and Oklahoma:Re-ply[J].AAPG Bulletin,1997,81(3):476-491.
    [32]Lowe D R.Grain flow and grain flow deposits[J].Journal ofSedimentary Research,1976,46(1):188-199.鲜本忠,万锦峰,姜在兴,等/地学前缘(Earth Science Frontiers)2012,19(1)
    [33]Mulder T,Alexander J.The physical character of subaque-ous sedimentary density flows and their deposits[J].Sedim-entology,2001,48(2):269-299.
    [34]Sohn Y K,Choe M Y,Jo H R.Transition from debris flowto hyperconcentrated flow in a submarine channel(the Creta-ceous CerroToro Formation,southern Chile)[J].Terra No-va,2002,14(5):405-415.
    [35]Le Roux J P.Can dispersive pressure cause inverse grading ingrain flows?discussion[J].Journal of Sedimentary Research,2003,73(2):333-334.
    [36]方欣欣,王华,姜华,等.南堡凹陷柳南地区东营组沉积体系分析[J].地质科技情报,2010,29(2):38-43.
    [37]史冠中,王华,徐备,等.南堡凹陷柏各庄断层活动特征及对沉积的控制[J].北京大学学报:自然科学版,2011,47(1):31-38.
    [38]操应长,刘晖.湖盆三角洲沉积坡度带特征及其与滑塌浊积岩分布关系的初步探讨[J].地质论评,2007,53(4):454-459.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心