二氧化碳地质封存工程防灾监测中瑞雷波敏感性初步分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
瑞雷波勘察技术常用于地震场地土评价,且长波微动观测可以获得深部地层的信息,但其在CO2地质封存工程防灾监测中应用的可行性探讨还未见深入研究报道。基于一典型CO2封存场地地层模型,通过数值模拟的方式,分析了瑞雷波波速对储层弹性参数改变的敏感性。模拟分析表明,CO2储层弹性参数变化对瑞雷波波速的影响随频厚积变化而变化;研究发现CO2储层横波波速改变相对于层厚、纵波或密度的改变对面波波速影响较大;研究还发现当CO2储层薄且埋深大时,面波频散特性对储层弹性参数改变不敏感。研究初步认为,当前常规的瑞雷波勘察技术用于深部CO2封存工程防灾监测具有一定的技术难度。
The surface wave analysis method has been widely used for earthquake microzoning surveys and long wave microtremors have been confirmed to contain deep underground geological information.Feasibility discussions about using the surface wave analysis for CO2 geological storage monitoring are restrictive in literatures.A numerical study was implemented in this paper to investigate the sensitivity of the Rayleigh wave velocity to the elastic parameter changes of the CO2 storage layer in a typical reservoir.It is observed that the influence of parameter variations on the Rayleigh wave velocity is associated with the frequency thickness products.The study results also indicate that the Rayleigh wave velocity is more sensitive to the change of the shear wave velocity than those of the thickness,the compression wave velocity and the density of the CO2 storage layer.The variation of the Rayleigh wave velocity is difficult to be detected by using the typical surface wave engineering survey strategy if a thin CO2 storage layer is located deeply underground within a geological reservoir.
引文
[1]Haskall N A.The dispersion of surface waves on multilayeredmedia[J].Bulletin of Seismological Society of America,1953,(43):17-34
    [2]Nazarian S.In situ determination of elastic moduli of soildeposits and pavement systems by Spectral-Analysis-Of-Surface-Waves method[D].Austin,US:The University ofTexas at Austin,1984
    [3]Ganji V,Gucunski N,Maher A.Detection of undergroundobstacles by SASW method-numerical aspects[J].Journalof Geotechnical and Geoenvironmental Engineering,1997,123(3):212-219
    [4]Kim D S,Shin M K,Park H C.Evaluation of density inlayer compaction using SASW method[J].Soil Dynamicsand Earthquake Engineering,2001,21(1):39-46
    [5]Street R,Woolery E W,Wang Z,et al.NEHRP soilclassifications for estimating site-dependent seismiccoefficients in the upper Mississippi embayment[J].Engineering Geology,2011,62:123-135
    [6]Martin A J,Diehl J G.Practical experience using a simplifiedprocedure to measure average shear-wave velocity to a depth of30 meters(Vs30)[C]//Proceeding of the 13th WorldConference on Earthquake Engineering,August 1-6,Vancouver,B.C.,Canada,2004
    [7]Yamanaka H,Takemura M,Ishida H,et al.Characteristicsof long-period microtremors and their applicability inexploration of deep sedimentary layers[J].Bulletin of theSeismological Society of America,1994,84(6):1831-1841
    [8]冉伟彦,王振东.长波微动法及其新进展[J].物探与化探,1994,18(1):28-34(Ran Weiyan,Wang Zhendong.The long-wave microtremors method and its advances[J].Geophysical&Geochemical Exploration,1994,18(1):28-34(in Chinese))
    [9]Metz B,Davidson O,ConinckH d,et al.Carbon dioxidecapture and storage(IPCC special report)[M].CambridgeUniversity Press,England,2005
    [10]Nooner S L,Eiken O,Hermanrud C,et al.Constraints onthe in situ density of CO2 within the Utsira formation fromtime-lapse seafloor gravity measurements[J].InternationalJournal of Greenhouse Gas Control,2007,1(2):198-214
    [11]Würdemann H,Mller F,Kühn M,et al.CO2 SINK—From site characterisation and risk assessment to monitoringand verification:One year of operational experience withthe field laboratory for CO2 storage at Ketzin,Germany[J].International Journal of Greenhouse Gas Control,2010,4(6):938–951
    [12]孙枢.CO2地下封存的地质学问题及其对减缓气候变化的意义[J].中国基础科学,2006,3:17-22(Sun Shu.Underground storage and its significance on mitigationclimate change[J].China Basic Science,2006,3:17-22(in Chinese))
    [13]张鸿翔,李小春,魏宁.CO2捕获与封存的主要技术环节与问题分析[J].地球科学进展,2010,25(3):335-340(Zhang Hongxiang,Li Xiaochun,Wei Ning.Themajor technology track and analysis about carbon dioxidecapture and storage[J].Advances In Earth Science,2010,25(3):335-340(in Chinese))
    [14]Arts R,Eiken O,Chadwick A,et al.Monitoring of CO2injected at Sleipner using time-lapse seismic data[J].Energy,2004,29(9/10):1383-1392
    [15]Daley T M,Solbau R D,Ajo-Franklin J B,et al.Continuousactive-source seismic monitoring of CO2 injection in a brineaquifer[J].Geophysics,2007,72(5):57-61
    [16]Miller G F,Pursey H.On the partition of energy betweenelastic waves in a semi-infinite solid[J].Proceedings ofthe Royal Society,London,Series A,1955,233(1192):55-69
    [17]Wang L,Rokhlin S I.Recursive geometric integrators forwave propagation in a functionally graded multilayeredelastic medium[J].Journal of the Mechanics and Physicsof Solids,2004,52(11):2473-2506
    [18]赵金峰.一维压电声子晶体中波传播的理论研究[D].上海:同济大学,2011(Zhao Jinfeng.Theoretical study ofwave propagation in one dimensional phonon crystal ofpiezoelectric materials[D].Shanghai:Tongji University,2011(in Chinese))
    [19]Khatiwada M,van Wijk K,Clement W P,et al,Numerical modeling of time-lapse monitoring of CO2sequestration in a layered basalt reservoir[C]//Proceeding of Society Exploration Geophysics AnnualMeeting:Society Exploration Geophysics ExpandedAbstracts,Las Vegas,Nevada,2008:3189-3193
    [20]Xue Z,Lei,X.Laboratory study of CO2 migration inwater-saturated anisotropic sandstone,based on P-wavevelocity imaging[J].Exploration Geophysics,2006,37(1):10-18

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心