地电荷的电容结构发电机制研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
由地电荷与地球自转运动发电原理及国际参考地磁场(IGRF)标准模型所确定的地球磁场能量的分布,经分析、推论,建立了地电荷的电容结构发电机制,并由此而建立了全球电磁场结构和等效电路.此电磁场发电机制由磁场和电路双正交结构组成,磁场正交结构为偶极子场和非偶极子场,电路正交结构为地电荷运动的等效发电环电流和电源及负载电阻组成的全球等效电路.电荷运动的等效发电环电流产生的是偶极子场;电源及负载电阻组成的全球等效电路产生的是非偶极子场.地电荷的电容结构发电机制所确定的地磁场结构模型,与现地磁场结构模型完全不同,特别是极区拱形地磁场及其双向地磁场边界特性.此模型对极光、极光椭圆区、极区双向电集流和极区离子上行,对大气电场、大地自然电位的形成和变化趋势,对行星际磁场BZ及其南、北分量BS和BN的生成,及行星际南向分量BS与磁暴的关系,以及对地震与偶极子场、非偶极子场之间的关系等,都作出了较合理的阐释.
Based on the power generation by the earth charge and the Earth rota tion,and the Earth′s magnetic energy distribution is set by the standard model of international reference field(IGRF),the generation mechanism of the Earth′s charge capacitor structure had been established by analysis and reasoning,and the resulting,has established a global electromagnetic field structure and equi valent circuit.The generation mechanism of electro-magnetic field is formed by biorthogonal structure of magnetic field and electric circuit.orthogonal struct ure of magnetic field is dipole field and non-dipole field,and orthogonal struc ture of electric circuit is formed by the ring current of equivalent generation with the Earth′s charge movement and global equivalent circuit of load resistanc e.The dipole field has been formed by Equivalent ring current of electric charg e moving.And global equivalent electric circuit composed by power supply and lo ad resistance has formed non-dipole field.That the geomagnetic field model def ined by power supply and load resistance compared with local magnetic field mode l is completely different,is especially the polar geomagnetic field of arch rin g and the two ways boundary characteristics of geomagnetic field.This model has made reasonable explained to Aurora,Aurora ellipse area,bi-directional electr ojets in polar and upgoing positive ion in polar,atmospheric electric field,fo rmed and changes trend for the Earth natural potential,to form of interstellar m agnetic field BZ,South BS,and North BN,and relationship between BZ and m agnetic storms,a nd relationship between earthquake and dipole field and non-dipole field,etc.
引文
[1]王文.国际地磁场参考场在中国大陆地区的误差分析[J].地球物理学报,2003,46(2):171~174.
    [2]袁立新.地球电磁场系统构成和运行机制[J].吉林师范大学学报(自然科学版),2010,31(4):135~142.
    [3]徐文耀.地磁场能量在地球内部的分布及其长期变化[J].地球物理学报,2001,44(6)747~753.
    [4]白春华,康国发,李伟.近300年来的地磁场总能量在地球内部的分布及长期变化[J].云南大学学报(自然科学版),2005,27(4):337~342.
    [5]史建魁,李纯强,刘振兴.电离层上行O+离子沿不同经度处的磁力线向磁层的传输[J].地球物理学报,2002,45(3):306~312.
    [6]陈渭民.雷电学原理[M].南京:气象出版社,2003.
    [7]魏自刚,徐文耀.地磁场的漂移运动和强度变化[J].地球物理学报,2011,44(4):500~509.
    [8]沈长寿,资民筠,王劲松,徐寄遥.电离层对流和极光区电集流的地磁链观测[J].地球物理学报,2005,48(5):969~976.
    [9]沈长寿,资民筠.极光区高空物理过程与磁层-电离层耦合[J].极地研究,1998,10(4):295~304.
    [10]沈长寿,资民筠,高玉芬,索玉成,吴健.对流电场、场向电流和极光区电集流变化的地磁响应[J].地球物理学报,1999,42(6):725~731.
    [11]马淑英,刘会欣,K.Schlegel.磁暴期间极光椭圆区与极盖区电离层效应比较研究——F区负暴[J].地球物理学报,2002,45(2):160~169.
    [12]王永生.大气物理学[M].北京:气象出版社,1987.
    [13]楚泽涵.地球物理测井方法与原理(上册)[M].北京:石油工业出版社,2007.
    [14]尉中良.地球物理测井[M].北京:地质出版社2005.
    [15]郑洪.深井电极与地表电极的自然电场对比研究[J].地震,2000,20(1)85~90.
    [16]袁立新.雷电的生成、运行和避雷[J].吉林师范大学学报(自然科学版),2011,32(4):132~136.
    [17]任志鹏,万卫星,魏勇,刘立波,余涛.基于真实地磁场的中低纬度电离层电场理论模式[J].科学通报,2008,53(18):2236~2242.
    [18]解用明,韩宝善.磁暴与华北地区地震活动的关系[J].西北地震学报,1997,19(1):44~48.
    [19]刘振兴,濮祖荫,沈超.磁层亚暴面临的难题及研究方向[J].中国科学院院刊,1998,(2),109~112.
    [20]张晓芳,查石祥,刘松涛,魏雅利.行星际扰动对地磁活动的影响[J].地震地磁观测与研究,2011,32(3):52~61.
    [21]高玉芬,张秀玲.行星际南向磁场事件与强磁暴[J].空间科学学报,2000,20(2):136~143.
    [22]刘绍亮,李立文.南向行星际磁场事件与磁暴关系分析[J].地球物理学报,2002,45(3):297~305.
    [23]高祥真.磁暴活动与太阳黑子的相关性[J].内陆地震,1994,8(4):382~384.
    [24]徐文耀.行星尺度地磁异常的长期变化[J].地球物理学报,2001,44(2):180~189.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心