带耗能腋撑竖向不规则短肢剪力墙结构减震性能分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
在不影响建筑使用空间前提下,提出在抗侧构件不连续处设置耗能腋撑以改善竖向不规则结构抗震性能。以底部大空间短肢剪力墙结构为研究对象,利用大型通用有限元程序ETABS研究耗能器类型与场地土对耗能腋撑工作性能和竖向不规则结构受力性能的影响。研究表明,黏滞型耗能腋撑对文中分析模型各楼层地震反应有较好的控制效果,对转换层处层间位移角与层剪力最大值减幅最大,分别为40.14%和15.66%,对顶层加速度与基底剪力峰值的最大减幅分别为16.06%和23.57%,黏滞型耗能腋撑最大能耗散输入结构能量的42%,而黏弹型耗能腋撑对结构的控制效果不理想;当地震震级较大、震中距较小时,耗能腋撑对坚硬与软弱场地土的模型结构控制作用相差不大,减震位移比在转换层处达到最小值0.76;随着震级减小或震中距增大,耗能腋撑对该模型结构的控制作用随场地土变硬而逐渐增强,其减震位移比介于0.68~0.74之间。
To make full utilization of floor space,energy dissipation haunch brace was proposed to be installed at the transfer story to improve the seismic performance of vertically irregular short-leg pier shear wall structures.A short-leg pier shear wall structure with large space at the bottom stories was selected.The effects of dampers and ground soil on the working performance of energy dissipation haunch brace and the seismic performance of vertically irregular structure were studied by using ETABS program.Results show that the significant control effects on the seismic responses of the model structure can be achieved by installing viscous energy dissipation haunch braces. The maximum inter-story drift angle and story shear can be decreased 40.14% and 15.66% respectively at the transfer story.The peak values of top floor acceleration and base shear are decreased 16.06% and 23.57% maximally,and the seismic energy can be maximally dissipated 42% by viscous energy dissipation haunch braces.The control effects of viscoelastic haunch braces are insignificant.For the cases of great earthquake magnitude and near epicenter,quite equivalent control effects of model structure built on soft or hard soil can be produced.The minimum damping displacement ratio at transfer story is 0.76.When decreasing earthquake magnitude or increasing epicentral distance,the control effects are gradually magnified for structures on stiffer site soil.The minimum damping displacement ratio is between 0.68 and 0.74.
引文
[1]徐培福,王翠坤,肖从真.剪力墙竖向不连续结构的震害与抗震设计概念[J].建筑结构学报,2004,25(5):1-9.
    [2]Moehle J P.Seismic response of vertically irregular structures[J].Journal of Structural Engineering,1984,110(9):2002-2014.
    [3]Costa A G.Quantification of vertical irregularities on seismic response of buildings[C]∥In:Proceedings of the Eighth Japan Earthquake Engi-neering Symposium,Tokyo,Japan,1990:2025-2029.
    [4]Valmundsson E V,Nau J M.Seismic response of building frames with vertical structural irregularities[J].Journal of Structural Engineering,1997,123(1):30-40.
    [5]Chintanapakdee C,Chopra A K.Seismic response of vertically irregular frame:response history and modal pushover analyses[J].Journal of Structural Engineering,2004,130(8):1177-1185.
    [6]廖宇飚,黄小坤.高层建筑结构侧向刚度变化及其控制方法研究(Ⅰ)[J].工程抗震与加固改造,2005,27(5):20-25.
    [7]廖宇飚,黄小坤.高层建筑结构侧向刚度变化及其控制方法研究(Ⅱ)[J].工程抗震与加固改造,2005,27(6):17-21.
    [8]容柏生.高层住宅建筑中的短肢剪力墙结构体系[J].建筑结构学报,1997,18(6):14-19.
    [9]李青宁,王宁,蔡卫宁.T形短肢剪力墙弹塑性模型及地震反应分析[J].地震工程与工程振动,2004,24(2):69-74.
    [10]钟树生,倪忠,勾清缓.框支短肢剪力墙结构抗震试验有限元分析[J].四川建筑科学研究,2007,33(2):131-135.
    [11]林崇洪,蔡健,杨鮀生.带腋撑钢框架结构受力特性研究[J].重庆建筑,2008,7(6):41-43.
    [12]北京金土木软件技术有限公司.ETABS中文版使用指南[M].北京:中国建筑工业出版社,2004:395-399.
    [13]周云.黏滞阻尼减震结构设计[M].武汉:武汉理工大学出版社,2006:88-89.
    [14]GB50011-2001建筑抗震设计规范[S].2001.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心