深圳海域潮汐海啸波耦合数值研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
以COMCOT海啸模式和TPXO7.1全球潮汐模式为基础,采用三层嵌套网格,建立了南海海啸与潮汐耦合计算模型,分析深圳海域海啸和潮汐相互作用。潮汐计算结果与实测数据吻合较好,高、低潮位平均误差小于15cm,20cm;在潮汐验证的基础上,以马尼拉海沟潜在地震海啸源为案例,进行8.0,9.0级地震海啸与潮汐耦合情景模拟计算,计算结果表明,9级地震海啸在深圳海域外海波高为140~150cm,如先行波为正波发生在高潮时将产生异常高潮位,负波发生在低潮时将产生异常低潮位,线性叠加计算结果偏大,在25.0cm之内,到达时间差异小于6min。
This paper describes a coupling model that simulates tsunami and the astronomical tide in the South China Sea.The coupling model is based on the tsunami model COMCOT and the global tide model TPXO7.1,using a 3-layer nested grid system.Tide-tsunami interactions are investigated in Shenzhen Waters.The computed results of tide simulations are in good agreements with observations with the average errors for the high and low tide level less than 15 cm and 20 cm.Based on tide simulations,tsunamis induced by the hypothetical earthquakes of the magnitude 8.0 and 9.0 in the Manila Trench are adopted as scenarios to simulate the tsunamis and tides interaction.The computed results show that,the tsunami wave height for 9.0Mw earthquake is about 140-150 cm outside Shenzhen Waters;and if the first tsunami wave is a positive wave which occurs at high tide level,the tsunami tide level will be extreme high,while a negative wave occurs at low tide level,the tsunami tide level will be extreme low.Compared with the coupling results,the wave height of tsunami calculated separately is about 25.0 cm higher,and the difference of tsunami arrival time is less than 6.0 mins.
引文
[1]陈颙,陈琪福,张尉.中国的海啸灾害[J].自然灾害学报,2007,16(2):1-6.
    [2]USGS Tsunami Sources Workshop 2006.Great earthquake tsunami sources:Empiricism&Beyond of Work[C].Menlo Park,California,USA,2006.
    [3]杨马陵,魏柏林.南海海域地震海啸潜在危险的探析[J].灾害学,2005,21(3):41-45.
    [4]LIU Y C,SANTOS A,WANG S M,et al.Tsunami hazards along Chinese coast from potential earthquakes in South China Sea[J].Physics of the earth and planetary interiors,2007,163:233-244.
    [5]LIU P L-F,WANG X M,SALISBURY A J.Tsunami hazard and early warning system in South China Sea[J].Journal of Asian EarthSciences,2009,36(1):2-12.
    [6]WU T R,HUANG H C.Modeling tsunami hazards from Manila trench to Taiwan[J].Journal of Asian Earth Sciences,2009,doi:10.1016/j.jseas.2008.12.006
    [7]潘文亮,王盛安,蔡树群.南海潜在海啸灾害的模拟[J].热带海洋学报,2009,28(6):7-14.
    [8]WEISZ R,WINTER C.Tsunami,tides and run-up:a numerical study[C]//Proceeding of the International Tsunami Symposium,Chania,Greece,27-29June,2005:322.
    [9]KOWALIK Z,PROSHUTINSKY T.Tide-tsunami interactions[J].Science of Tsunami Hazards,2006,24(4):242-256.
    [10]DAO M H,TKALICH P.Tsunami propagation modeling-a sensitivity study[J].Natural Hazards and Earth System Sciences,2007,7:741-754.
    [11]KOWALIK Z,PROSHUTINSKY A.Tsunami-tide interactions:a Cook Inlet case study[J].Continental Shelf Research,2009,doi:10.1016/j.csr.2009.10.004
    [12]姚远.台湾海峡海啸的数值模拟[D].北京:中国科学院研究生院,2007.
    [13]LIU P L-F,CHO Y S,BRIGGS M J,et al.Runup of solitary waves on a circular Island[J].Journal of Fluid Mechanics,1995,302:259-285.
    [14]WANG X M,LIU P L-F.A numerical investigation of Boumerdes-Zemmouri(Algeria)earthquake and tsunami[J].Computer Modelingin Engineering and Science,2005,10(2):171-184.
    [15]WANG X M,LIU P L-F.An analysis of 2004Sumatra earthquake fault plane mechanisms and Indian Ocean tsunami[J].Journal of Hy-draulic Research,2004,44(2):147-154.
    [16]MASINHA L,SMYLIE D E.The displacement fields of inclined faults[J].Bulletin of the Seismological Society of America,1971,61(5):1433-1440.
    [17]OKADA Y.Surface deformation due to shear and tensile faults in a half-space[J].Bulletin of the Seismological Society of America,1985,75:1135-1154.
    [18]EGBERT G D,EROFEEVA S Y.Efficient inverse modeling of barotropic ocean tides[J].Journal of Atmospheric and Oceanic Technol-ogy,2002,19(2):183-204.
    [19]MAO X Z,WEI Y,TANG L J.Tsunami modeling for South China Sea[R]//The Second International Symposium on Shallow Flows.The Hong Kong University of Science and Technology,2008.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心