陆相湖盆块体搬运体的沉积特征、识别标志与形成机制
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
块体搬运体已经成为大陆边缘重力流勘探的新领域。与大陆边缘相比,陆相湖盆是否存在大规模的块体搬运体及其沉积特征、识别标志、形成机制、分布规模、外部形态及与浊积岩的差异性都是值得探索的重要课题。利用松辽和二连等坳陷或断陷盆地的地震及岩心、分析化验资料,对上述问题进行了探讨和研究。陆相湖盆的重力流可以分为块体搬运体和浊积岩,二者在沉积特征、流体浓度、流态、流变学特征及地震响应特征等方面都存在显著差异。块体搬运体以层流为主,具有固体和宾汉流体的特征,常见弹性、脆性及塑性形变,除常见块状砂岩外,还发育大量包卷层理、滑塌变形构造、布丁构造及微断裂等同沉积或软沉积变形构造,同时也可见到泥岩漂砾等;浊积岩以紊流为主,具有牛顿流体的特征,发育递变层理。厚层块体搬运体在地震上具有透明和乱岗状的弱反射特征,而薄层块体搬运体具有眼球形的强反射结构。块体流不仅具有重力流的粒度分布特征,同时还具有牵引流的粒度分布特征。与浊积岩相比,块体搬运体在陆相湖盆的分布更为广泛,不仅层数多,而且单层厚度大,具有更好的储集性能,是中国陆相湖盆重力流勘探的新领域。
Extensive mass transport deposits (MTDs) distributed in continental margin have became new filed of gravity flow exploration and development. In order to understand the sedimentary and distribution characteristics of the MTDs which deposited in depression and faulted basins, Songliao Basin and Erlian Bain are chosen as the research object. Based on integrated analysis of seismic, core and laboratory test data, sedimentary features and distribution pattern of MTDs were studied systematically. Gravity flow deposits can be divided into MTDs and turbidite. MTDs are different from turbidities in terms of sedimentary structure, concentration, flow pattern, rheology characteristics and seismic response. MTDs belong to laminar flow with solid and bingham fluid characteristics simultaneously and include movement and emplacement by elastic deformation and brittle deformation and plastic deformation. Besides the common massive sandstone, MTDs also form synsedimentary deformation structures or soft-sedimentary deformation structures, such as convolute bedding, slumping deformation structure, boudinage and microfaults, as well as shale boulder. Turbidite belongs to turbulence which forms grained beddings. Seismic profile reveals that thick layer of MTDs are characterized by chaotic, mounded, and transparent seismic reflection, and thin layer of MTDs have eye-shaped reflection structure. MTDs not only have the particle size distribution characteristics of gravity flow, but also have the particle size distribution characteristics of traction current. MTDs are more widely distributed than turbidite in the study area, have more layers and larger monolayer thickness, and have better reservoir performance. The study shows that MTDs are new areas for terrestrial lacustrine gravity flow exploration.
引文
[1]Shipp R C,Weimer P,Posamentier H W.Mass-transport deposits in deepwater settings[G].SEPM Special Publication96,2011:1-4.
    [2]Posamentier H W,Martinsen O J.The character and genesis of sub-marine mass-transport deposits:Insights from outcrop and3D seismic data[G].SEPM Special Publication96,2011:7-38.
    [3]Butler R W H,McCaffrey W D.Structural evolution and sediment entrainment in mass-transport complexes:Outcrop studies from Italy[J].Journal of the Geological Society,2010,167(3):617-631.
    [4]Imbert P,Cretu M,Oppeneau T,et al.The architecture of large mass-transport complexes-Long runout deposits vs.deformed sub-strate[C].69th EAGE Conference&Exhibition,2007.
    [5]Moscardelli L,Wood L,Mann P.Mass-transport complexes and asso-ciated processes in the offshore area of Trinidad and Venezuela[J].AAPG Bulletin,2006,90(7):1059-1088.
    [6]Moscardelli L,Wood L.New classification system for mass transport complexes in offshore Trinidad[J].Basin research,2008,20(1):26.
    [7]Pickering K T,Corregidor J.Mass-Transport Complexes(MTCs)and tectonic control on basin-floor submarine fans,Middle Eocene,South Spanish Pyrenees[J].Journal of Sedimentary Research,2005,75(5):761-783.
    [8]Pivovar B.Mass transport and its relation to structure of new proton conducting membranes[C].1st European PEFC Forum:Interna-tional Conference with Exhibition,2001.
    [9]Armitage D A,Romans B W,Covault J A,et al.The influence of mass-transport-deposit surface topography on the evolution of tur-bidite architecture:The Sierra Contreras,Tres Pasos Formation(Cretaceous),Southern Chile[J].Journal of Sedimentary Research,2009,79(5):287-301.
    [10]Bull S,Cartwright J,Huuse M.A review of kinematic indicators from mass-transport complexes using3D seismic data[J].Marine and Petroleum Geology,2009,26(10):1132-1151.
    [11]Sarkar S,Marfurt K J.Generation of sea-level curves from deposi-tional pattern as seen through seismic attributes-seismic geomor-phology analysis of an MTC-rich shallow sediment column,northern Gulf of Mexico[J].The Leading Edge,2010,29(9):1084-1091.
    [12]Dunlap D B,Wood L J,Weisenberger C,et al.Seismic geomor-phology of offshore Morocco’s east margin,Safi Haute Merarea[J].AAPG Bulletin,2010,94(5):615-642.
    [13]Ratzov G,Collot J-Y,Sosson M,et al.Mass-transport deposits in the northern Ecuador subduction trench:Result of frontal erosion over multiple seismic cycles[J].Earth and Planetary Science Letters,2010,296(1/2):89-102.
    [14]Back S,Van Gent H,Reuning L,et al.3D seismic geomorphology and sedimentology of the Chalk Group,southern Danish North Sea[J].Journal of the Geological Society,2011,168(2):393-406.
    [15]吴时国,秦蕴珊.南海北部陆坡深水沉积体系研究[J].沉积学报,2009,27(5):922-930.
    [16]朱筱敏.沉积岩石学[M].第4版.北京:石油工业出版社,2008:90-260.
    [17]付锁堂,邓秀芹,庞锦莲.晚三叠世鄂尔多斯盆地湖盆沉积中心厚层砂体特征及形成机制分析[J].沉积学报,2010,28(6):1081-1089.
    [18]李相博,刘化清,完颜容,等.鄂尔多斯盆地三叠系延长组砂质碎屑流储集体的首次发现[J].岩性油气藏,2009,21(3):19-21.
    [19]邹才能,赵政璋,杨华,等.陆相湖盆深水砂质碎屑流成因机制与分布特征——以鄂尔多斯盆地为例[J].沉积学报,2009,27(6):1065-1073.
    [20]鲜本忠,万锦峰,姜在兴,等.断陷湖盆洼陷带重力流沉积特征与模式:以南堡凹陷东部东营组为例[J].地学前缘,2012,19(1):121-135.
    [21]郑荣才,李云,戴朝成,等.白云凹陷珠江组深水扇砂质碎屑流沉积学特征[J].吉林大学学报:地球科学版,2012,42(6):1581-1589.
    [22]潘树新.大型坳陷湖盆深水重力流研究——以松辽盆地青山口组为例[D].成都:成都理工大学,2012.
    [23]Dott R H Jr.Dynamics of subaqueous gravity depositional processes[J].AAPG Bulletin,1963,47(1):104-128.
    [24]Middleton G V,Hampton M A.Subaqueous sediment transport and deposition by sediment gravity flows[C]∥Stanley D J,Swift D J P.Marine Sediment Transport and Environmental Management,Wiley,New York,1976:197-218.
    [25]Lowe D R.Sediment-gravity flows,Ⅱ:Depostional models with special reference to the deposits of high-density turbidity currents[J].Journal of Sedimentary Petrology,1982,52:279-297.
    [26]Lowe D R.Sediment-gravity flows:Their classification,and some problems of applications to natural flows and deposits[G]∥Doyle L J,Pilkey O H.Geology of Continental Slopes.Society of Economic Paleontologists and Mineralogists Special Publication27,1979:75-82.
    [27]Kruit C,Brouwer J,Knox G,et al.Une excursion aux cones d’all-uvions en eau profonde d’age tertiaire prés de San Sebastian(Pro-vince de Guipuzcoa,Espagne):9th International Congress of Sedimentology,Nice,France,1975.
    [28]Rupke N A.Deep Clastic Seas[M]∥Reading H G.Sedimentary Environments and Facies.Oxford:Blackwell Scientific Publications,1978:372-415.
    [29]Pickering K,Stow D.Deep-water facies,processes and models:A review and classification scheme for modern and ancient sediments[J].Earth-Science Reviews,1986,23(2):75-174.
    [30]Nemec W.Aspects of sediment movement on steep delta slopes[G]∥Colella A,Prior D B.Coarse-Grained Deltas:InternationalAssociation of Sedimentologists Special Publication10,1991:29-73.
    [31]Shanmugam G,Moiola R J.Reinterpretation of depositional proce-sses in a classic flysch sequence(Pennsylvanian Jackfork Group),Ouachita Mountains,Arkansas and Oklahoma[J].AAPG Bulletin,1995,79(5):672-695.
    [32]Coussot P,Meunier M.Recognition,classification and mechanical description of debris flows[J].Earth-Science Reviews,1996,(40):209-227.
    [33]Middleton G V,Hampton M A.Sediment-gravity flows:Mechanics of flow and deposition[C]∥Middleton G V,Bouma A H.Turbidites and deep-water sedimentation.Society of Economic Paleontolo-gists and Mineralogists,Los Angeles,1973:1-38.
    [34]Hampton M A.Competence of fine-grained dedris flow[J].Journal of Sedimentary Petrology,1975,45(4):834-844.
    [35]Johnson A M,Rodine J R.Debris flow[M]∥Brunsden D,Prior D B.Slope Instability.Chichester:John Wiley&Sons,1984:257-361.
    [36]Shanmugam G.50years of the turbidite paradigm(1950s—1990s):Deep-water processes and facies models-A critical perspective[J].Marine and Petroleum Geology,2000,17(2):285-342.
    [37]Shanmugam G.High-density turbidity currents:Are they sandy debris flows?[J].Journal of Sedimentary Research,1996,66(1):2-10.
    [38]Coussot P,Proust S,Ancey C.Rheological interpretation of deposits of yield stress fluids[J].Journal of Non-Newtonian Fluid Mechanics,1996,66:55-70.
    [39]王颖,王晓州,王英民,等.大型坳陷湖盆坡折带背景下的重力流沉积模式[J].沉积学报,2009,27(6):1076-1083.
    [40]姜在兴.沉积学[M].北京:石油工业出版社,2008:1-260.
    [41]于兴河.碎屑岩系油气储层沉积学[M].第2版.北京:石油工业出版社,2008:102-260.
    [42]高红灿,郑荣才,魏钦廉,等.碎屑流与浊流的流体性质及沉积特征研究进展[J].地球科学进展,2012,27(8):815-827.
    [43]孙枢,李继亮.我国浊流与其他重力流沉积研究进展概况和发展方向问题刍议[J].沉积学报,1984,2(4):1-5.
    [44]吴崇筠,薛叔浩.中国含油气盆地沉积学[M].北京:石油工业出版社,1993:1-42.
    [45]冯增昭,王英华,刘焕杰,等.中国沉积学[M].北京:石油工业出版社,1994:1-99.
    [46]郑荣才,马启科,杨宝泉,等.白云凹陷珠江组深水扇砂岩储层特征及控制因素[J].成都理工大学学报:自然科学版,2012,39(5):455-462.
    [47]李祥辉,王成善,金玮,等.深海沉积理论发展及其在油气勘探中的意义[J].沉积学报,2009,27(1):77-86.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心