地震与降雨耦合作用下区域滑坡灾害评价方法
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
基于莫尔–库仑破坏准则,通过引入地震动惯性力和地下水位系数,推导地震与降雨耦合作用下的滑坡安全系数计算公式。提出应用滑坡体物性、几何参数频度分析和蒙特卡罗模拟联合求算滑坡滑动概率的思路,建立综合坡度、土体类别、地震动强度和地下水位系数等因素的滑坡滑动概率理论判定矩阵。利用计算获得的特定研究区内不同强度地震动的重现概率,可将该矩阵转化为不同复发年限内实际地震发生条件下滑坡滑动概率的理论判定矩阵。依据2类理论判定矩阵,结合GIS技术、数字地质图和高精度DEM数据,即可实现地震与降雨耦合作用下区域滑坡灾害的概率性评价;以日本北九州市为例,给出应用该方法评价区域滑坡灾害的概率性预测结果。
Based on the Mohr-Coulomb failure criterion,a formula to calculate the factor of safety for landslide under coupling condition of earthquake and rainfall is deduced by introducing the inertia force of ground motion and groundwater factor.Then,by applying frequency analysis of physical and geometric parameters of slip mass and Monte Carlo simulation,a method to estimate sliding probability of landslides under coupling condition is developed.Consequently,the theoretical matrix,which considers influences of ground motion,slope angle,soil type and groundwater factor on sliding probability of landslides synthetically,is established to assess the risk probability of landslides under coupling condition.The earthquake,in fact,is a small probability event.For thinking over the occurrence probability of actual earthquake in any certain research region,it is better to calculate the repeated probabilities of ground motion according to its background seismicity.By the reoccurrence probabilities of ground motion,the above-mentioned theoretical matrix could figure the actual risk probability of landslides associated with earthquake events in any interesting region.According to the two kinds of theoretical matrixes,the probabilistic assessment for regional susceptibility of landslides under coupling condition should be achieved by GIS,data of digital geological map and high-precision DEM in a certain research region.As the case of Kitakyushu City,Japan,the procedure is applied to investigate the regional susceptibility of landslides under coupling condition in this city and the probabilistic assessment results are provided in the end.
引文
[1]ALEOTTI P,CHOWDHURY R.Landslide hazard assessment:summary review and new perspectives[J].Bulletin of Engineering Geology and the Environment,1999,58(1):21–44.
    [2]GUZZETTI F,CARRARA A,CARDINALI M,et al.Landslide hazard evaluation:a review of current techniques and their application in a multi-scale study,Central Italy[J].Geomorphology,1999,31(1/2/3/4):181–216.
    [3]DAI F C,LEE C F,NGAI Y Y.Landslide risk assessment and management—an overview[J].Engineering Geology,2002,64(1):65–87.
    [4]ROERING J J,KIRCHNER J W,DIETRICH W E.Characterizing structural and lithologic controls on deep-seated sliding:implications for topographic relief and landscape evolution in the Oregon Coast Range,USA[J].Geological Society of America Bulletin,2005,117(5/6):654–668.
    [5]GARCIA-RODRINGUEZ M J,MALPICA J A,BENITO B,et al.Susceptibility assessment of earthquake-triggered landslides in El Salvador using logistic regression[J].Geomorphology,2008,95(3/4):172–191.
    [6]MARZORATI S,LUZI L,DE A M.Rock falls induced by earthquakes:a statistical approach[J].Soil Dynamics and Earthquake Engineering,2002,22(7):565–577.
    [7]KOI T,HOTTA N,ISHIGAKI I,et al.Prolonged impact of earthquake-induced landslides on sediment yield in a mountain watershed:the Tanzawa region,Japan[J].Geomorphology,2008,101(4):692–702.
    [8]GUZZETTI F,REICHENBACH P,ARDIZZONE F,et al.Estimating the quality of landslide susceptibility models[J].Geomorphology,2006,81(1/2):166–184.
    [9]GUZZETTI F,REICHENBACH P,CARDINALI M,et al.Probabilistic landslide hazard assessment in the basin scale[J].Geomorphology,2005,72(1/2/3/4):272–299.
    [10]CARRARA A,MERENDA L.Landslides inventory in northern Calabria,southern Italy[J].Geological Society of America Bulletin,1976,87(8):1 229–1 246.
    [11]CARRARA A,PUGLIESE E,MERENDA L.Computer-based data bank and statistical analysis of slope instability phenomena[J].Zeitschrift Fur Geomorphologie,Neue Folge,1977,21(2):187–222.
    [12]CARRARA A.Multivariate models for landslide hazard evaluation[J].Mathematical Geology,1983,15(3):403–426.
    [13]ALEXANDER D E.A brief survey of GIS in mass-movement studies,with reflections on theory and methods[J].Geomorphology,2008,94(3/4):261–267.
    [14]ZHOU G,ESAKI T,MITANI Y,et al.Spatial probabilistic modeling of slope failure using an integrated GIS Monte Carlo simulation approach[J].Engineering Geology,2003,68(3/4):373–386.
    [15]CHACON J,IRIGARAY C,FERNANDEZ T,et al.Engineering geology maps:landslides and geographical information systems[J].Bulletin of Engineering Geology and the Environment,2006,65(4):341–411.
    [16]何光碧,屠妮妮,张平,等.5.12汶川特大地震重灾区降水气候特征分析[J].高原山地气象研究,2008,28(2):47–54.(HE Guangbi,TU Nini,ZHANG Ping,et al.Characteristics analysis of precipitation in severe earthquake disaster area on May 12th in Sichuan Province[J].Plateau and Mountain Meteorology Research,2008,28(2):47–54.(in Chinese))
    [17]蒋兴文,李跃清.四川地区地震与降水量的统计分析[J].高原山地气象研究,2008,28(2):33–36.(JIANG Xingwen,LI Yueqing.The statistical analysis of earthquake and precipitation in Sichuan Province[J].Plateau and Mountain Meteorology Research,2008,28(2):33–36.(in Chinese))
    [18]林鸿州,于玉贞,李广信,等.降雨特性对土质边坡失稳的影响[J].岩石力学与工程学报,2009,28(1):198–204.(LIN Hongzhou,YU Yuzhen,LI Guangxin,et al.Influence of rainfall characteristics on soil slope failure[J].Chinese Journal of Rock Mechanics and Engineering,2009,28(1):198–204.(in Chinese))
    [19]李汝成,王复明.降雨入渗对泥岩–土混填路堤稳定性的影响[J].岩石力学与工程学报,2008,27(11):2 260–2 266.(LI Rucheng,WANG Fuming.Effect of rainfall infiltration on stability of mudstone-soil mixture embankment[J].Chinese Journal of Rock Mechanics and Engineering,2008,27(11):2 260–2 266.(in Chinese))
    [20]KRAMER S.L.Geotechnical earthquake engineering[M].New Jersey:Prentice Hall,1996:438–442.
    [21]王兰民.黄土动力学[M].1版.北京:地震出版社,2003:288–290.(WANG Lanmin.Loess dynamics[M].1st ed.Beijing:Earthquake Press,2003:288–290.(in Chinese))

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心