利用海底电缆探测太平洋地区地幔结构的研究进展
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
介绍了地幔电性结构、地幔温度、地幔含水量等参数对地球动力学和地幔动力学过程的重要科学意义,综述了近年来利用海底电缆在该领域的主要研究进展.本文首先介绍了日本利用海底电缆探测地幔深部结构的方法原理与发展历程,然后阐述了该方法的观测方式、观测系统与仪器,综述了国际上近年来利用海底电缆在环太平洋地区海底的观测资料进行地幔一维电导率结构、三维电导率分布的研究进展.基于海底电缆的观测数据进行反演的结果表明,太平洋海域地区地球深部存在410km,660km的电导率不连续面,此不连续面与地震资料的波速不连续面基本一致,为地幔不连续面提供了新的地球物理证据.在根据由海底电缆观测数据反演得到的太平洋地区地球内部电导率分布基础上,综述了综合深部地震波速、岩石高温高压实验等,将电导率的分布转换为地球内部的温度场分布、推导地幔过渡带水的浓度进而转换为地幔过渡带的含水百分比(含水量)的方法技术与研究进展.研究结果表明,夏威夷和北日本海地幔过渡带电导率异常主要受温度控制,菲律宾海域地幔过渡带的电导率异常除了和温度有关外,还受含水量影响,该处地幔过渡带的含水量大约在1%左右.这些研究表明,海底电缆探测方法,在地球深部探测尤其是地幔不连续面的探测、地幔温度场分布与特征、地幔含水量等方面有重要的作用.最后,展望了海底电缆探测方法的研究与发展,这些研究方法及成果对认识中国海域地球内部机构提供一定的参考.
The knowledge on electrical conductivity in the mantle are very significant parameters for understanding the geodynamics and the evolution of the earth,as it is strongly sensitive to temperature,the presence of melt,water content,etc.This paper first introduces the general principle of the submarine cable method for exploring the Pacific Ocean mantle structure in Japan and its development.And then,it describes the recent progress in the studies,such as observation system of this novel method and mantle conductivity structure referred from the data of submarine cables in the Pacific Ocean.Including the results of the submarine cable study,the research progresses in the mantle transition zone below the Pacific Ocean are reviewed at the same time.Also the 1-D conductivity structure,which is inverted from the data recorded by the submarine cable,reveals that there are two discontinuity surfaces in the depth of 410 km and 660 km of the earth,which are even in accordance with the discontinuity surfaces inferred from the ocean bottom seismic data.All these two evidences describe the mantle structures in details.Moreover,through combining with the results of the seismic velocity studies in the depths of the earth,the rock experiments in high-temperature and high-pressure laboratory and the conductivity distribution in the Pacific Ocean mantle,it reveals that the mantle 3-D conductivity distribution,inverted from the submarine cable data,can be transformed into temperature distribution and even the percentage of the water content in the mantle transition zone.These results of the relevant studies and the related research progresses show that the anomaly conductivity distribution in the mantle transition zone of Hawaii and north Japan Sea is mainly influenced by temperature;however,that of the Philippine Sea is also influenced by the water content in the mantle transition zone,besides the factor of temperature anomaly in the mantle transition zone.In addition,the results of the related studies also reveal the percentage of the water content in the mantle transition zone of the Philippine Sea is about 1%.All these progresses in the electrical conductivity of the Pacific Ocean mantle transition zone evidently reveal that the submarine cable method is of vital usefulness to explore the characteristics of the mantle physical parameters,especially in the areas such as the temperature distribution,the water content etc.in the mantle transition zone and even in the deeper earth.The relevant improvement and further development are finally discussed,which may enlighten the relevant research and study in China Sea.
引文
[1]杨翠平,金振民,吴耀.地幔转换带中的水及其地球动力学意义[J].地学前沿,2010,17(3):114-126.Yang C P,Jin Z M,Wu Y.Water in the mantle transitionzone and its geodynamic implications[J].Earth ScienceFrontiers(in Chinese),2010,17(3):114-126.
    [2]熊熊,滕吉文,许厚泽.地幔热柱动力学研究的新进展[J].地球物理学进展,2001,16(1):62-69.Xiong X,Teng J W,Xu H Z.Progress of study on mantleplume dynamics[J].Progress in Geophysics(in Chinese),2001,16(1):62-69.
    [3]宋晓东,李思田,李迎春,等.岩石圈地幔结构及其对中国大型盆地的演化意义[J].地球科学(中国地质大学学报),2004,29(5):531-538.Song X D,Li S T,Li Y C,et al.Structure of lithosphericmantle and its implications for the evolution of major basins inChina[J].Earth Science-Journal of China University ofGeosciences(in Chinese),2004,29(5):531-538.
    [4]Nagumo S,Walker D A.Ocean bottom geoscience observatories:reuse of transoceanic telecommunications cables[J].EOS,1989,70(26):673-677.
    [5]Katao H,Kasahara J,Koresawa S.Seismic observation usinginertia navigation servo accelerometers for application to thebroad band ocean bottom seismometer[J].Bull.Earthq.Res.Inst.,Univ.Tokyo,1990,65:633-648.
    [6]Walker D A.Using transoceanic cables to quantify globalenvironmental changes[J].EOS,1991,72(37):393-398.
    [7]Kasahara J,Utada H,Kinoshita H.GeO-TOC projectreuse ofsubmarine cables for seismic and geoelectrical measurements[J].J.Phys.Earth.,1995a,43:619-628.
    [8]Kasahara J,Utada H,Sato T,et al.Submarine cable OBSusing a retired submarine telecommunication cable:GeO-TOCprogram[J].Physics of the Earth and Planetary Interiors,1997,108:113-127.
    [9]Banks R J.Geomagnetic variations and the electrical conductivity ofthe upper mantle[J].Geophys.J.Int.,1969,17(5):457-487.
    [10]Constable S,Shankland T J,Duba A.The electrical conductivityof an isotropic olivine mantle[J].J.Geophys.Res.,1992,97(B3):3397-3404.
    [11]Utada H,Koyama T,Shimizu H,et al.A semi-global referencemodel for electrical conductivity in the mid-mantle beneaththe north Pacific region[J].Geophysical Research Letters,2003,30(4),doi:10.1029/2002GL016092.
    [12]Koyama T,Shimizu H,Utada H,et al.Water content in themantle transition zone beneath the North Pacific derived fromthe electrical conductivity anomaly[J].GeophysicalMonograph Series,2006,168:171-179.
    [13]Shimizu H,Koyama T,Baba K,et al.Revised 1-D mantleelectrical conductivity structure beneath the north pacific[J].Geophys.J.Int.,2010,180(3):1030-1048.doi:10.1111/j.1365-246X.2009.04466.x.
    [14]Junzo Kasahara.Submarine cable OBS using a retired submarinetelecommunication cable:GeO-TOC program[J].Physics ofthe Earth and Planetary Interiors,1997,108:113-127.
    [15]Fujii I,Lanzerotti L J,Utada H,et al.Geoelectric powerspectra over oceanic distances[J].Geophysical ResearchLetters,1995,22(4):421-424.
    [16]Olsen N.Long-period(30days–1year)electromagneticsounding and the electrical conductivity of the lower mantlebeneath Europe[J].Geophys.J.Int.,1999,138(1):179-187.
    [17]Neal S L,Mackie R L,Larsen J C,et al.Variations in theelectrical conductivity of the upper mantle beneath NorthAmerica and the Pacific Ocean[J].Geophys.Res.,2000,105(B4):8229-8242.
    [18]Parker R L.The inverse problem of electromagnetic induction:Existence and construction of solutions based on incompletedata[J].J.Geophys.Res.,1980,85(B8):4421-4428.
    [19]Fujii I,Schultz A.The 3Delectromagnetic response of theEarth to ring current and auroral oval excitation[J].Geophys.J.Int.,2002,151(3):689-709.
    [20]Constable S C,Parker R L,Constable C G.Occam’s inversion:A practical algorithm for generating smooth models fromelectromagnetic sounding data[J].Geophysics,1987,52(3):289-300.
    [21]Xu Y S,Poe B T,Shankland T J,et al.Electrical conductivityof olivine,wadsleyite,and ringwoodite under upper-mantleconditions[J].Science,1998,280(5368):1415-1418.
    [22]Kuvshinov A,Utada N,Avdeev D B,et al.3-D modellingand analysis of DstC-responses in the North Pacific Oceanregion,revisited[J].Geophys.J.Int.,2005,160(2):505-526.
    [23]Smyth J R,Frost D J.The effect of water on the 410-kmdiscontinuity:An experimental study[J].GeophysicalResearch Letters,2002,29(10):1231-1234.doi:10.1029/2001GL014418.
    [24]Yuen D A,Cadek O,Chopelas A,et al.Geophysical inferencesof thermal-chemical structures in the lower mantle[J].Geophys.Res.Lett.,1993,20(10):899-902.
    [25]Fukao Y,Koyama T,Obayashi M,et al.Trans-Pacifictemperature field in the mantle transition region derived fromseismic and electromagnetic tomography[J].Earth Planet.Sci.Lett.,2004,217:425-434.
    [26]Zhang J F,Green H W,Bozhilov K,et al.Faulting inducedby precipitation of water at grain boundaries in hot subductingoceanic crust[J].Nature,2004,428(6983):633-636.
    [27]Huang X G,Xu Y S,Karato S.Water content in the transitionzone from electrical conductivity of wadsleyite andringwoodite[J].Nature,2005,434(7034):746-749.
    [28]Karato S.Importance of anelasticity in the interpretation ofseismic tomography[J].Geophys.Res.Lett.,1993,20(15):1623-1626.
    [29]Yusa H,Inoue T.Compressibility of hydrous wadsleyite(β-phase)in Mg2SiO4by high pressure X-ray diffraction[J].Geophys.Res.Lett.,1997,24(14):1831-1834.
    [30]Xu Y S,Shankland T J,Poe B T.Laboratory-based electricalconductivity in the Earth’s mantle[J].J.Geophys.Res.,2000,105(B12):27865-27875.
    [31]Kohlstedt D L,Keppler H,Rubie D C.Solubility of water intheα,β,andγphases of(Mg,Fe)2SiO4[J].Contrib.Mineral.Petrol.,1996,123(4):345-357.
    [32]Kuvshinov A V,Olsen N,Avdeev D B,et al.Electromagneticinduction in the oceans and the anomalous behaviour ofcoastal C-responses for periods up to 20days[J].Geophys.Res.Lett.,2002,29(12):36-1-36-4.
    [33]Katsura T,Yamada H,Nishikawa O,et al.Olivine-wadsleyitetransition in the system(Mg,Fe)2SiO4[J].J.Geophys.Res.,2004,109(B2):B02099,doi:10.1029/2003JB002438.
    [34]Koyama T,Shimizu H,Utada H,et al.Water content in themantle transition zone beneath the North Pacific Derived fromthe Electrical Conductivity Anomaly[J].GeophysicalMonograph Series,2006,168:171-179.
    [35]Shimizu H,Utada H,Baba K,et al.Three-dimensionalimaging of electrical conductivity in the mantle transition zonebeneath the North Pacific Ocean by a semi-global inductionstudy[J].Physics of the Earth and Planetary Interiors,2010,183(1-2):252-269.
    [36]Shimizu H,Koyama T,Baba K,et al.Three-dimensionalgeomagnetic response functions for global and semi-globalscale induction problems[J].Geo.J.Int.,2009,178(1):123-144.
    [37]Inoue T,Weidner D J,Northrup P A,et al.Elastic properties of hydous ringwoodite(phase)in Mg2SiO4[J].Earthand Planetary Science Letters,1998,160(1-2):107-113.
    [38]Obayashi M,Yoshimitsu J,Fukao Y.Tearing of stagnant slab[J].Science,2009,324(5931):1173-1175.
    [39]Mégnin C,Romanowicz B.The three-dimensional shear velocitystructure of the mantle from the inversion of body,surfaceand higher-mode waveforms[J].Geophys.J.Int.,2000,143(3):709-728.
    [40]Wang D J,Li H P,Yi L,et al.The electrical conductivity ofupper-mantle rocks:water content in the upper mantle[J].Phys.Chem.Miner.,2008,35(3):157-162.
    [41]Kawakatsu H,Watada S.Seismic evidence for deep-watertransportation in the mantle[J].Science,2007,316(5830):1468-1471.
    [42]Maruyama S,Okamoto K.Water transportation from thesubducting slab into the mantle transition zone[J].Gondwana Res.,2007,11(1-2):148-165.
    [43]Obayashi M,Sugioka H,Yoshimitsu J,et al.High temperatureanomalies oceanward of subducting slabs at the 410-kmdiscontinuity[J].Earth Planet.Sci.Lett.,2006,243(1-2):149-158.
    [44]Seama N,Baba K,Utada H,et al.1-D electrical conductivitystructure beneath the Philippine Sea:Results from an oceanbottom magnetotelluric survey[J].Physics of the Earth andPlanetary Interiors,2007,162(1-2):2-12.
    [45]Ohtani E,Litasov K D,Hosoya T,et al.Water transportinto the deep mantle and formation of a hydrous transitionzone[J].Phys.Earth Planet.Inter.,2004,143-144:255-269.
    [46]Ohtani E,Litasov K D.The effect of water on mantle phasetransitions[J].Reviews in Mineralogy and Geochemistry,2006,62(1):397-420.
    [47]Schultz A,Pritchard G.Three-dimensional inversion for large-scale structure in a spherical domain[A].//Oristaglio M,Spies B R(eds.).Three-Dimensional Electromagnetics,Geophysical Development Series,Soc.of ExplorationGeophysicists,1999,7:139-152.
    [48]Utada H,Koyama T,Obayashi M,et al.A joint interpretationof electromagnetic and seismic tomography models suggeststhe mantle transition zone below Europe is dry[J].Earth andPlanetary Science Letters,2009,281(3-4):249-257.
    [49]Utada H,Shimizu H,Ogawa T,et al.Geomagnetic fieldchanges in response to the 2011 off the Pacific Coast ofTohoku Earthquake and Tsunami[J].Earth and PlanetaryScience Letters,2011,311(1-2):11-27,doi:10.1016/j.epsl.2011.09.036
    [50]Yoshino T,Manthilake G,Matsuzaki T,et al.Dry mantletransition zone inferred from the conductivity of wadsleyiteand ringwoodite[J].Nature,2008,451(7176):326-329.
    [51]Bercovici D,Karato S.Whole-mantle convection and thetransition-zone water filter[J].Nature,2003,425(6953):39-44.
    [52]丘学林,赵明辉,敖威,等.南海西南次海盆与南沙地块的OBS探测和地壳结构[J].地球物理学报,2011,54(12):3117-3128,doi:10.3969/j.issn.0001-5733,2011,12,012.Qiu X L,Zhao M H,Ao W,et al.OBS survey and crustalstructure of the Southwest Sub-basin and Nansha Block,South China Sea[J].Chinese J.Geophys.(in Chinese),2011,54(12):3117-3128,doi:10.3969/j.issn.0001-5733.2011.12.012.
    [53]张乐天,魏文博,金胜,等.上地幔岩石的电性-温度依赖关系研究[J].地球物理学进展,2011,26(2):505-510,doi:10.3936/j.issn.10042903.2011.02.015.Zhang L T,Wei W B,Jin S,et al.Studies on thetemperature dependence of electrical conductivity of uppermantle rocks[J].Progress in Geophys.(in Chinese),2011,26(2):505-510,doi:10.3936/j.issn.10042903.2011.02.015.
    [54]雷显权,陈运平,赵俊猛,等.天山造山带深部探测及地球动力学研究进展[J].地球物理学进展,2012,27(2):417-428,doi:10.6038/j.issn.1004-2093,2012.02.005.Lei X Q,Chen Y P,Zhao J M,et al.Deep probe in theTianshan orogenic belt and its geodynamics[J].Progress inGeophys.(in Chinese),2012,27(2):417-428,doi:10.6038/j.issn.1004-2093,2012.02.005.
    [55]Zhang L L,Koyama T,Utada H,et al.A regularized three-dimensional magnetotelluric inversion with a minimumgradient support constraint[J].Geophys.J.Int.,2012,189(1):296-316,doi:10.1111/j.1365-246X.2012.05379.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心