南海北部陆坡神狐海域含水合物沉积层时频特征提取及识别方法
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
南海北部陆坡神狐海域是天然气水合物发育的有利区域,天然气水合物在时间-频率域具有独特的响应特征.结合研究区最新处理的高分辨率三维地震资料、测井和钻井解释成果,采用基于连续小波变换的时频分析方法,可以实现对含水合物沉积层及其下伏游离气沉积层在时间-频率域成像.通过分析,在研究区识别出低频低能、高频低能、低频高能、高频高能、低频盲区和高频盲区等多种频率异常,发现频率异常与游离气饱和度、水合物饱和度、裂隙发育情况及调谐效应密切有关,认为水合物存在带可以通过寻找低频高能、高频低能或高频盲区之上的低频低能、高频高能或高频低能区识别.研究证明基于时频分析的时间-频率域水合物识别方法其分辨率明显高于时间-振幅方法,即使是在时域剖面BSR特征不明显时,也可以对含水合物层进行识别,因此,获取的时频特征也可以作为水合物识别的直接指示.
The gas hydrate petroleum system in Shenhu Area of northern South China Sea is considered to be one of the promising targets for exploration and exploitation.Combining time-frequency information from seismic reflection data sets allows the analysis of anomalous reflections from very-shallow to great subsurface depths.Time-frequency analysis method enhances the imaging of subsurface features which have a frequency-dependent reflectivity such as hydrate and gas.The interpretation method has been used to our study area.The seismic imagery shows several anomalous reflection amplitudes,such as low frequency low intensity anomalies,low frequency high intensity anomalies,high frequency low intensity anomalies,high frequency high intensity anomalies,low frequency blackout anomalies and high frequency blackout anomalies.Research result shows that low frequency low intensity anomalies and high frequency low intensity or high frequency high intensity anomalies overlying low frequency high intensity and high frequency low intensity or high frequency blackout anomalies may be attributed to the occurrence of gas hydrate.We conclude that this technique has a good potential to assist seismic study of structures associated with gas hydrates accumulations.
引文
[1]Kvenvolden K A.Methane hydrate-A major reservoir of carbonin the shallow geosphere?[J].Chemical Geology,1988,71(1-3):41-51.
    [2]Sultan N,Cochonat P,Foucher J P,et al.Effect of gashydrates melting on seafloor slope instability[J].MarineGeology,2004,213(1-4):379-401.
    [3]Makogon Y F.Natural gas hydrates-A promising source ofenergy[J].Journal of Natural Gas Science and Engineering,2010,2(1):49-59.
    [4]Hyndman R D,Spence G D.A seismic study of methane hydratemarine bottom simulating reflectors[J].Journal ofGeophysical Research,1992,97(5):6683-6698.
    [5]宋海斌,Osamu M,杨胜雄,等.含天然气水合物沉积物的岩石物性模型与似海底反射层的AVA特征[J].地球物理学报,2002,45(4):546-556.Song H B,Osamu M,Yang S X,et al.Physical propertymodels of gas hydrate-bearing sediments and AVA character ofbottom simulating reflector[J].Chinese J.Geophys.(inChinese),2002,45(4):546-556.
    [6]Hornbach M J,Bangs N L,Berndt C.Detecting hydrate andfluid flow from bottom simulating reflector depth anomalies[J].Geology,2012,40(3):227-230.
    [7]徐华宁,邢涛,王家生,等.利用多道地震反射数据探测神狐海域渗漏型水合物[J].地球科学-中国地质大学学报,2012,37(S1):195-202,Xu H N,Xing T,Wang J S,et al.Detecting seepage hydratereservoir using multi-channel seismic reflecting data in ShenhuArea[J].Earth Science-Journal of China University ofGeosciences(in Chinese),2012,37(S1):195-202.
    [8]Korenaga J,Holbrook W S,Singh S C,et al.Natural gashydrates on the southeast U.S.margin:Constraints from fullwaveform and travel time inversions of wide-angle seismic data[J].Journal of Geophysical Research,1997,102(B8):15345-15365.
    [9]宋海斌,Osamu M,Shinichi K.天然气水合物似海底反射层的全波形反演[J].地球物理学报,2003,46(1):42-46.Song H B,Osamu M,Kuramoto S.Full waveform inversionof gas hydrate-related bottom simulating reflectors[J].Chinese J.Geophys.(in Chinese),2003,46(1):42-46.
    [10]Ma J Q,Geng J H.Reflection and transmission of bottomsimulating reflectors in gas hydrate-bearing sediments:two-phase media models[J].Applied Geophysics,2008,5(1):57-66.
    [11]霍元媛,张明.基于遗传算法的天然气水合物似海底反射层速度结构全波形反演[J].石油地球物理勘探,2010,45(1):55-59,Huo Y Y,Zhang M.The genetic algorithm based velocitystructure waveform inversion for gas hysrate bottomsimulating reflection(BSR)[J].Oil Geophysical Prospecting(in Chinese),2010,45(1):55-59.
    [12]张如伟,张宝金,黄捍东,等.天然气水合物沉积层的AVA特征[J].石油地球物理勘探,2011,46(4):634-639.Zhang R W,Zhang B J,Huang H D,et al.AVA characterson gas hydrate-bearing sedimentary deposit[J].Oilgeophysical Prospecting(in Chinese),2011,46(4):634-639.
    [13]Wood W T,Hart P E,Hutchinson D R,et al.Gas and gashydrate distribution around seafloor seeps in MississippiCanyon,Northern Gulf of Mexico,using multi-resolutionseismic imagery[J].Marine and Petroleum Geology,2008,25(9):952-959.
    [14]Castagna J P,Sun S,Siegfried R W.The use of spectraldecomposition as a hydrocarbon indicator[J].Gas Tips,2002,8(2):24-27.
    [15]Chen G L,Matteucci G,Fahmy B,et al.Spectral decompositionresponse to reservoir fluids from a deepwater West Africareservoir[J].Geophysics,2008,73(6):C23-C30.
    [16]Oliveira S,Vilhena O,da Costa E.Time-frequency spectralsignature of Pelotas Basin deep water gas hydrates system[J].Marine Geophysical Researches,2010,31(1-2):89-97.
    [17]Duchesne M J,Halliday E J,Barrie J V.Analyzing seismicimagery in the time-amplitude and time-frequency domainsto determine fluid nature and migration pathways:a casestudy from the Queen Charlotte Basin,offshore BritishColumbia[J].Journal of Applied Geophysics,2011,73(2):111-120.
    [18]Vanneste M,de Batist M,Golmshtok A,et al.Multi-frequency seismic study of gas hydrate-bearing sediments inLake Baikal,Siberia[J].Marine Geology,2001,172(1-2):1-21.
    [19]胡高伟,业渝光,张剑,等.基于弯曲元技术的含水合物松散沉积物声学特性研究[J].地球物理学报,2012,55(11):3762-3773.Hu G W,Ye Y G,Zhang J,et al.Acoustic properties ofhydrate-bearing unconsolidated sediments based on benderelement technique[J].Chinese J.Geophys.(in Chinese),2012,55(11):3762-3773.
    [20]Partyka G,Gridley J,Lopez J.Interpretational applicationsof spectral decomposition in reservoir characterization[J].The Leading Edge,1999,18(3):353-360.
    [21]Dvorkin J,Uden J.Seismic wave attenuation in a methanehydrate reservoir[J].The Leading Edge,2004,23(8):730-732.
    [22]路鹏飞,杨长春,郭爱华.频谱成像技术研究进展[J].地球物理学进展,2007,22(5):1517-1521.Lu P F,Yang C C,Guo A H.The present research onfrequency-spectrum imaging technique[J].Progress inGeophysics(in Chinese),2007,22(5):1517-1521.
    [23]刘喜武,宁俊瑞,刘培体,等.地震时频分析与分频解释及频谱分解技术在地震沉积学与储层成像中的应用[J].地球物理学进展,2009,24(5):1679-1688.Liu X W,Ning J R,Liu P T,et al.Seismic time-frequencyanalysis for frequency decomposition with applications toseismic sedimentology and reservoir imaging[J].Progress inGeophysics(in Chinese),2009,24(5):1679-1688.
    [24]张固澜.基于改进的广义S变换的低频吸收衰减梯度检测[J].地球物理学报,2011,54(9):2407-2411.Zhang G L.Low-frequency absorption attenuation gradientdetection based on improved generalized S transform[J].Chinese J.Geophys.(in Chinese),2011,54(9):2407-2411.
    [25]赵迎月,顾汉明,李宗杰,等.Wigner-Ville高阶时频谱及其在塔中奥陶系缝洞型储层预测中的应用[J].石油地球物理勘探,2010,45(5):688-694.Zhao Y Y,Gu H M,Li Z J,et al.Wigner-Ville higher-ordertime&frequency spectrum and its application in prediction ofOrdovician fractured-vuggy reservoir in Tazhong Area[J].Oil Geophysical Prospecting(in Chinese),2010,45(5):688-694.
    [26]武国宁,曹思远,马宁,等.S变换的时频分析特性及其改进[J].地球物理学进展,2011,26(5):1661-1667.Wu G N,Cao S Y,Ma N,et al.The time frequencyproperty of S transform and its generalization[J].Progress inGeophysics(in Chinese),2011,26(5):1661-1667.
    [27]陈学华,贺振华,黄德济,等.时频域油气储层低频阴影检测[J].地球物理学报,2009,5(1):215-221.Chen X H,He Z H,Huang D J,et al.Low frequencyshadow detection of gas reservoirs in time-frequency domain[J].Chinese J.Geophys.(in Chinese),2009,52(1):215-221.
    [28]陈雨红,杨长春,曹齐放,等.几种时频分析方法比较[J].地球物理学进展,2006,21(4):1180-1185.Chen Y H,Yang C C,Cao Q F,et al.The comparison ofsome time-frequency analysis methods[J].Progress inGeophysics(in Chinese),2006,21(4):1180-1185.
    [29]孟小红,郭良辉,张致付,等.基于非均匀快速傅里叶变换的最小二乘反演地震数据重建[J].地球物理学报,2008,51(1):235-240.Meng X H,Guo L H,Zhang Z F,et al.Reconstruction ofseismic data with least squares inversion based on nonuniformfast Fourier transform[J].Chinese J.Geophys.(inChinese),2008,51(1):235-240.
    [30]杨培杰,印兴耀,张广智.希尔伯特-黄变换地震信号时频分析与属性提取[J].地球物理学进展,2007,22(5):1585-1590.Yang P J,Yin X Y,Zhang G Z.Seismic signal time-frequency analysis and attributes extraction based on HHT[J].Progress in Geophysics(in Chinese),2007,22(5):1585-1590.
    [31]武国宁,曹思远,孙娜.基于复数道地震记录的匹配追踪算法及其在储层预测中的应用[J].地球物理学报,2012,55(6):2027-2034.Wu G N,Gao S Y,Sun N.Matching pursuit method basedon complex seismic traces and its application of hydrocarbonexploration[J].Chinese J.Geophys.(in Chinese),2012,55(6):2027-2034.
    [32]Ker S,Gonidec Y L,Gibert D,et al.Multiscale seismicattributes:a wavelet-based method and its application tohigh-resolution seismic and ground truth data[J].Geophysical Journal International,2011,187(2):1038-1054.
    [33]Zhang H Q,Yang S X,Wu N Y.GMGS-1Science team:China’s first gas hydrate expedition successful.Fir in theEarth.Methane Hydrate Newsletter,National TechenologyLaboratory,US department of Energy,2007.Spring/Summer Issue,2007,1:4-8.
    [34]吴时国,董冬冬,杨胜雄,等.南海北部陆坡细粒沉积物天然气水合物系统的形成模式初探[J].地球物理学报,2009,52(7):1849-1857.Wu S G,Dong D D,Yang S X,et al.Genetic model of thehydrate system in the fine grain sediments in the northerncontinental slope of South China Sea[J].Chinese J.Geophys.(in Chinese),2009,52(7):1849-1857.
    [35]吴能有,杨胜雄,王宏斌,等.南海北部陆坡神狐海域天然气水合物成藏的流体运移体系[J].地球物理学报,2009,52(6):1641-1650.Wu N Y,Yang S X,Wang H B,et al.Gas-bearing fluidinflux sub-system for gas hydrate geological system in ShenhuArea,Northern South China Sea[J].Chinese J.Geophys.(in Chinese),2009,52(6):1641-1650.
    [36]苏丕波,梁金强,沙志彬,等.南海北部神狐海域天然气水合物成藏动力学模拟[J].石油学报,2011,32(2):226-233.Su P B,Liang J Q,Sha Z B,et al.Dynamic simulation of gashydrate reservoirs in the Shenhu area,the northern SouthChina Sea[J].Acta Petrolei Sinica(in Chinese),2011,32(2):226-233.
    [37]苏正,曹运诚,杨睿,等.南海北部神狐海域天然气水合物成藏演化分析研究[J].地球物理学报,2012,55(5):1764-1774.Su Z,Cao Y C,Yang R,et al.Analytical research onevolution of methane hydrate deposits at Shenhu Area,northern South China Sea[J].Chinese J.Geophys.(inChinese),2012,55(5):1764-1774.
    [38]Sun Y B,Wu S G,Dong D D,et al.Gas hydrates associatedwith gas chimneys in fine-grained sediments of the northernSouth China Sea[J].Marine Geology,2012,311-314:32-40.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心